Advertisement

Polar Biology

, Volume 40, Issue 3, pp 517–531 | Cite as

Overview of coralline red algal crusts and rhodolith beds (Corallinales, Rhodophyta) and their possible ecological importance in Greenland

  • Helle I. Ø. JørgensbyeEmail author
  • Jochen Halfar
Original Paper

Abstract

Coralline red algae are a globally distributed and abundant group of shallow marine benthic calcifiers. They can form important ecosystems that provide a three-dimensional habitat to a large variety of marine organisms. While the study of coralline red algae has traditionally been focused on warm-water habitats, numerous recent reports have now described widespread coralline red algal ecosystems from high-latitude regions, particularly in the Northern Hemisphere. In fact, it is becoming increasingly evident that coralline red algae are likely the dominant marine calcifying organisms on the seafloor of the Arctic and subarctic photic zone. This article gives a first overview of the distribution of coralline red algal crusts and rhodolith (free-living coralline red algal nodules) grounds in Greenland and the first report of rhodoliths in East Greenland. Museum data and recent sampling information have been compiled to develop a distribution map of coralline genera and rhodolith communities. The depth range of coralline red algae in Greenland has been extended by 27 m, from 50 to 77 m depth. In addition, rhodoliths of the normally crust-forming species Clathromorphum compactum are described for the first time from a sheltered Greenland fjord. Based on the data compiled here, it becomes clear that rhodolith communities are a widespread feature of the Greenland shallow shelf areas. Gaining a better understanding of the distribution of these hitherto poorly understood high-latitude ecosystems is essential due to their function as spawning areas and nursery grounds for commercially important fish and invertebrates.

Keywords

Coralline red algae Rhodoliths Greenland Clathromorphum compactum Maërl 

Notes

Acknowledgments

We wish to thank Ellen Kenchington from Bedford Institute of Oceanography and Captain and crew aboard Canadian Coast Guard Ship Hudson for help with fieldwork. We are grateful to Dr. Calvin Campbell and Dr. Vlad Kostylev (NRCan) for the use of the 4KCam and Angus Robertson 416 (NRCan) for his able deployment of it under difficult conditions. Thanks to Martin Blicher from the Greenland Climate Research Centre for help with sampling in Greenland. Thanks TELE greenland for allowing us to use scuba diving footage. We further wish to thank the editor and three anonymous reviewers for their constructive comments, which helped us to improve the manuscript.

Funding

Helle Jørgensbye acknowledges support from an Industrial PhD grant from the Home Rule government of Greenland and Sustainable Fisheries Greenland. Jochen Halfar acknowledges support from a Natural Sciences and Engineering Research Council Canada, Discovery grant.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Adey WH (1970a) Some relationships between crustose corallines and their substrate. Sci Islandica 2:21–25Google Scholar
  2. Adey WH (1970b) The effects of light and temperature on growth rates in Boreal-subarctic crustose corallines. J Phycol 6:269–276. doi: 10.1111/j.1529-8817.1970.tb02392.x Google Scholar
  3. Adey WH, Halfar J, Williams B (2013) The Coralline Genus Clathromorphum Foslie emend. Adey: biological, physiological, and ecological factors controlling carbonate production in an arctic-subarctic climate archive. Smithson Contrib Mar Sci 40:1–41CrossRefGoogle Scholar
  4. Adey W, Halfar J, Humphreys A et al (2015) Subarctic rhodolith beds promote longevity of crustose coralline algal buildups and their climate archiving potential. Palaios 30:281–293. doi: 10.2110/palo.2014.075 CrossRefGoogle Scholar
  5. Bosence DWJ (1983) Description and classification of rhodoliths (rhodoids, rhodolites). In: Peryt TM (ed) Coated grains. Springer, Berlin, pp 217–224CrossRefGoogle Scholar
  6. Bosence D, Wilson J (2003) Maerl growth, carbonate production rates and accumulation rates in the NE Atlantic. Aquat Conserv Mar Freshw Ecosyst 13:21–31. doi: 10.1002/aqc.565 CrossRefGoogle Scholar
  7. Buchardt B, Seaman P, Stockmann G et al (1997) Submarine columns of ikaite tufa. Nature 390:129–130CrossRefGoogle Scholar
  8. Büdenbender J, Riebesell U, Form A (2011) Calcification of the Arctic coralline red algae Lithothamnion glaciale in response to elevated CO2. Mar Ecol Prog Ser 441:79–87CrossRefGoogle Scholar
  9. Chenelot H, Jewett SC, Hoberg MK (2011) Macrobenthos of the nearshore Aleutian Archipelago, with emphasis on invertebrates associated with Clathromorphum nereostratum (Rhodophyta, Corallinaceae). Mar Biodivers 41:413–424. doi: 10.1007/s12526-010-0071-y CrossRefGoogle Scholar
  10. Christensen T (1971) Havbundens planter. In: Nørrevang A, Meyer TJ, Christensen S (eds) Grønlands natur. Politikens forlag, Copenhagen, pp 253–261Google Scholar
  11. Donnan DW, Moore PG (2003) Introduction. Aquat Conserv Mar Freshw Ecosyst 13:1–3. doi: 10.1002/aqc.563 CrossRefGoogle Scholar
  12. Düwel L (1996) Undersøgelse af kalkrødalgevegetationen i Ikkafjorden, Sydvestgrønland: Forløbige resultater af ekspeditionerne i 1995 og 1996. Botanical Institute, University of Copenhagen, Copenhagen, pp 1–54Google Scholar
  13. Düwel L, Wegeberg S (1992) Kalkinkrusterede rødalger på Disko: artsbestemmelse, systematik og biologi. In: Andersen PF, Düwel L, Hansen OS (eds) Feltkursus i Arktisk biologi, Godhavn 1990. Arctic Station University of Copenhagen, Copenhagen, pp 61–93Google Scholar
  14. Düwel L, Wegeberg S (1996a) Kalkrødalgerne ved Grønlands vestkyst. Urt 20:67–73Google Scholar
  15. Düwel L, Wegeberg S (1996b) The typification and status of Leptophytum (Corallinaceae, Rhodophyta). Phycologia 35:470–483. doi: 10.2216/i0031-8884-35-5-470.1 CrossRefGoogle Scholar
  16. Estes J, Duggins D (1995) Sea Otters and Kelp Forests in Alaska: generality and Variation in a Community Ecological Paradigm. Ecol Monogr 65:75–100CrossRefGoogle Scholar
  17. FAO (2009) The FAO international guidelines for the management of deep-sea fisheries in the high seas. Food and Agricultural Organization of the United Nations, RomeGoogle Scholar
  18. ForBio (2013) The Invertebrate Collections. In: ForBio Mar. Course Greenl. http://invertebrate.b.uib.no/2013/09/. Accessed 10 Apr 2015
  19. Foster MS (2001) Rhodoliths: between rocks and soft places. J Phycol 37:659–667. doi: 10.1046/j.1529-8817.2001.00195.x CrossRefGoogle Scholar
  20. Freiwald A (1993) Coralline algal maerl frameworks—islands within the phaeophytic kelp belt. Facies 29:133–148CrossRefGoogle Scholar
  21. Freiwald A (1998) Modern nearshore cold-temperate calcareous sediments in the Troms district, Northern Norway. J Sediment Res 68:763–776. doi: 10.2110/jsr.68.763 CrossRefGoogle Scholar
  22. Freiwald A, Henrich R (1994) Reefal coralline algal build-ups within the Arctic Circle: morphology and sedimentary dynamics under extreme environmental seasonality. Sedimentology 41:963–984. doi: 10.1111/j.1365-3091.1994.tb01435.x CrossRefGoogle Scholar
  23. Gagnon P, Matheson K, Stapleton M (2012) Variation in rhodolith morphology and biogenic potential of newly discovered rhodolith beds in Newfoundland and Labrador (Canada). Bot Mar 55:85–99. doi: 10.1515/bot-2011-0064 CrossRefGoogle Scholar
  24. Garcia E, Ragnarsson G, Akí S et al (2006) Bottom Trawling and Scallop Dredging in the Arctic: Impacts of Fishing on Non-target Species, Vulnerable Habitats and Cultural Heritage. TemaNord. Nordic Council of Ministers, Copenhagen, pp 275–276Google Scholar
  25. Halfar J, Adey WH, Kronz A et al (2013) Arctic sea-ice decline archived by multicentury annual-resolution record from crustose coralline algal proxy. Proc Natl Acad Sci USA 110:19737–19741. doi: 10.1073/pnas.1313775110 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hall-Spencer JM, Moore PG (2000) Scallop dredging has profound, long-term impacts on maerl habitats. ICES J Mar Sci 57:1407–1415. doi: 10.1006/jmsc.2000.0918 CrossRefGoogle Scholar
  27. Hall-Spencer JM, Kelly J, Maggs CA (2010) Background Document for Maërl beds. OSPAR Comm 491(2010):1–36Google Scholar
  28. Higgins RP, Kristensen RM (1988) Kinorhyncha from Disko Island, West Greenland. Smithson Contrib Zool 458:1–55Google Scholar
  29. Himmelmann JH (1991) Diving observations of subtidal communities in the northern Gulf of St. Lawrence. In: Therriault J-C (ed) The Gulf of St. Lawrence: Small ocean or big estuary? vol 113. Canadian Special Publication of Fisheries and Aquatic Sciences, pp 319–332Google Scholar
  30. Jørgensbye HIØ (2009) GFLK Årsrapport 2008. KANUAANA/GFLK Greenland Home Rule Government, Nuuk, pp 1–37Google Scholar
  31. Jørgensbye HIØ (2010) GFLK Årsrapport 2009. KANUAANA/GFLK Greenland Home Rule Government, Nuuk, pp 1–48Google Scholar
  32. Kamenos NA, Moore PG, Hall-Spencerc JM (2004) Small-scale distribution of juvenile gadoids in shallow inshore waters; what role does maerl play? ICES J Mar Sci 61:422–429. doi: 10.1016/j.icesjms.2004.02.004 CrossRefGoogle Scholar
  33. Kamenos NA, Hoey TB, Nienow P et al (2012) Reconstructing Greenland ice sheet runoff using coralline algae. Geology 40:1095–1098. doi: 10.1130/G33405.1 CrossRefGoogle Scholar
  34. Kjellman RR (1883) The algae of the Arctic Sea, a survey of the species, together with an exposition of the general characters and the development of the flora. Kungl. Svenska vetenskapsakademiens handlingar, StockholmCrossRefGoogle Scholar
  35. Konar B, Iken K (2005) Competitive dominance among sessile marine organisms in a high Arctic boulder community. Polar Biol 29:61–64. doi: 10.1007/s00300-005-0055-8 CrossRefGoogle Scholar
  36. Le Gall L, Saunders GW (2007) A nuclear phylogeny of the Florideophyceae (Rhodophyta) inferred from combined EF2, small subunit and large subunit ribosomal DNA: establishing the new red algal subclass Corallinophycidae. Mol Phylogenet Evol 43:1118–1130. doi: 10.1016/j.ympev.2006.11.012 CrossRefPubMedGoogle Scholar
  37. Marrack EC (1999) The relationship between water motion and living rhodolith beds in the southwestern Gulf of California, Mexico. Palaios 14:159–171. doi: 10.2307/3515371 CrossRefGoogle Scholar
  38. Mathieson AC, Penniman CA, Harris LG (1991) Northwest Atlantic rocky shore ecology. In: Mathieson AC, Nienhuis PH (eds) Intertidal and littoral ecosystems (Ecosystems of the World). Elsevier, Amsterdam, pp 109–192Google Scholar
  39. Nelson WA (2009) Calcified macroalgae—critical to coastal ecosystems and vulnerable to change: a review. Mar Freshw Res 60:787. doi: 10.1071/MF08335 CrossRefGoogle Scholar
  40. Ojeda FP, Dearborn JH (1989) Community structure of macroinvertebrates inhabiting the rocky subtidal zone in the Gulf of Maine: seasonal and bathymetric distribution. Mar Ecol Prog Ser 57:147–161CrossRefGoogle Scholar
  41. Pedersen PM (2011) Grønlands havalger. Forlaget Epsilon, CopenhagenGoogle Scholar
  42. Penney D (1992) A preliminary account of the ostracod faunas of Disko Island. In: Andersen PF, Düwel L, Hansen OS (eds) Feltkursus i Arktisk biologi, Godhavn 1990. University of Copenhagen, Copenhagen, pp 181–197Google Scholar
  43. Pugh PJA, Davenport J (1997) Colonisation vs. disturbance: the effects of sustained ice-scouring on intertidal communities. J Exp Mar Bio Ecol 210:1–21. doi: 10.1016/S0022-0981(96)02711-6 CrossRefGoogle Scholar
  44. Råd Ø (2014) Grønlands økonomi 2014. Nuuk, GreenlandGoogle Scholar
  45. Rasmussen K (1932) South East Greenland. The Sixth Thule Expedition, 1931, from Cape Farewell to Angmagssalik. Geogr Tidsskr 35:169–197Google Scholar
  46. Rink H (1852-57) Grønland geographisk og statistisk beskrevet I, II. CopenhagenGoogle Scholar
  47. Riosmena-Rodriguez R, Medina-López M (2010) The role of rhodolith beds in the recruitment of invertebrate species from the Southwestern Gulf of California, México. In: Seckbach J, Einav R, Israel A (eds) Seaweeds and their Role in Globally Changing Environments. Springer, Dordrecht, pp 127–138CrossRefGoogle Scholar
  48. Riosmena-Rodríguez R, López-Calderón JM, Mariano-Meléndez E et al (2012) Size and distribution of rhodolith beds in the Loreto Marine Park: their role in coastal processes. J Coast Res 279:255–260. doi: 10.2112/JCOASTRES-D-11T-00008.1 CrossRefGoogle Scholar
  49. Rosenvinge LK (1893) Grønlands havalger. Meddelser om Grønl III:981Google Scholar
  50. Rosenvinge LK (1898) Om algevegetationen ved Grønlands kyster. Meddelser om Grønl 10:130–243Google Scholar
  51. Seaman PBB (2006) The columns of ikaite tufa in Ikka Fjord, Greenland. Monogr Greenl 340:1–39Google Scholar
  52. Sørensen MV, Kristensen RM (2000) Marine Rotifera from Ikka Fjord, SW Greenland. Bioscience 51:1–46Google Scholar
  53. Sswat M, Gulliksen B, Menn I et al (2015) Distribution and composition of the epibenthic megafauna north of Svalbard (Arctic). Polar Biol 38:861–877. doi: 10.1007/s00300-015-1645-8 CrossRefGoogle Scholar
  54. Steller DL, Riosmena-Rodriguez R, Foster MS, Roberts CA (2003) Rhodolith bed diversity in the Gulf of California: the importance of rhodolith structure and consequences of disturbance. Aquat Conserv Mar Freshw Ecosyst 13:5–20. doi: 10.1002/aqc.564 CrossRefGoogle Scholar
  55. Steller DL, Riosemena-Rodriguez R, Foster MS (2009) Living rhodolith bed ecosystems in the Gulf of California. In: Johnson ME, Ledesma-Vazquez J (eds) Atlas of coastal ecosystems in the Western Gulf of California: tracking limestone deposits on the Margin of a young sea. University of Arizona Press, Tucson, pp 72–82Google Scholar
  56. Steneck RS, Graham MH, Bourque BJ et al (2002) Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ Conserv 29:436–459. doi: 10.1017/S0376892902000322 CrossRefGoogle Scholar
  57. Teichert S (2014) Hollow rhodoliths increase Svalbard’s shelf biodiversity. Sci Rep 4:6972. doi: 10.1038/srep06972 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Teichert S, Freiwald A (2014) Polar coralline algal CaCO3-production rates correspond to intensity and duration of the solar radiation. Biogeosciences 11:833–842. doi: 10.5194/bg-11-833-2014 CrossRefGoogle Scholar
  59. Teichert S, Woelkerling W, Rüggeberg A et al (2012) Rhodolith beds (Corallinales, Rhodophyta) and their physical and biological environment at 80 31′N in Nordkappbukta (Nordaustlandet, Svalbard Archipelago, Norway). Phycologia 51:371–390. doi: 10.2216/11-76.1 CrossRefGoogle Scholar
  60. Teichert S, Woelkerling W, Rüggeberg A et al (2014) Arctic rhodolith beds and their environmental controls (Spitsbergen, Norway). Facies 60:15–37. doi: 10.1007/s10347-013-0372-2 CrossRefGoogle Scholar
  61. Therkildsen NO, Hemmer-Hansen J, Hedeholm RB et al (2013) Spatiotemporal SNP analysis reveals pronounced biocomplexity at the northern range margin of Atlantic cod Gadus morhua. Evol Appl 6:690–705. doi: 10.1111/eva.12055 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Thormar J (2008) The rhodoliths of Disko Fjord, Greenland: First visual record of the Lithothamnion glaciale/tophiforme (Corallinales, Rhodophyta) aggregation in Disko Fjord, 69°N, Greenland. In: Halberg KA (ed) Arctic Biology Field Course, Qeqertarsuaq, 2006. University of Copenhagen, Copenhagen, pp 87–112Google Scholar
  63. Thorsen MS, Klitgaard A, Jensen IB, Jørgensen M (1989) Undersøgelse af tre arktiske lokaliteter domineret af kalkincrusterende rødalger, på Disko, Grønland. In: Jørgensen M (ed) Feltkursus i Arktisk Biologi, Godhavn 1988. University of Copenhagen, Copenhagen, pp 207–274Google Scholar
  64. Tobler M, Honorio E, Janovec J, Reynel C (2007) Implications of collection patterns of botanical specimens on their usefulness for conservation planning: an example of two neotropical plant families (Moraceae and Myristicaceae) in Peru. Biodivers Conserv 16:659–677. doi: 10.1007/s10531-005-3373-9 CrossRefGoogle Scholar
  65. Wegeberg S (2014) Benthic flora. In: Boertmann D, Mosbech A, Schiedek D, Dünweber M (eds) Disko West: a strategic environmental impact assessment of hydrocarbon activities. Scientific Report from Danish Centre for Environment and Energy No. 71, pp 1–306Google Scholar
  66. Wilson S, Charmaine B, Berges JA, Maggs CA (2004) Environmental tolerances of free-living coralline algae (maerl): implications for European marine conservation. Biol Conserv 120:279–289. doi: 10.1016/j.biocon.2004.03.001 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.National Institute of Aquatic ResourcesTechnical University of Denmark (DTU Aqua)CharlottenlundDenmark
  2. 2.Department of Chemical and Physical SciencesUniversity of Toronto at MississaugaMississaugaCanada

Personalised recommendations