Polar Biology

, Volume 40, Issue 1, pp 61–78 | Cite as

Ecological shift from piscivorous to planktivorous seabirds in the Chukchi Sea, 1975–2012

  • Adrian E. Gall
  • Tawna C. Morgan
  • Robert H. Day
  • Katherine J Kuletz
Original Paper


Sea ice now forms later and melts earlier than it did 4 decades years ago, and it now melts completely in all parts of the Chukchi Sea. This decline in sea ice is expected to have repercussions on the trophic structure in this environment, and there are indications that changes already have taken place in the seabird community. We compared boat-based densities of seabirds in the eastern Chukchi Sea between July and October during 1975–1981 (historical data) with densities during 2007–2012 (recent data). We related the composition of the seabird community to sea-ice cover to explore how the community may be responding to changes in oceanography. The seabird community historically was composed predominantly of piscivorous Black-legged Kittiwakes (Rissa tridactyla) and murres (Uria spp.). In contrast, the seabird community now is composed predominantly of planktivorous seabirds such as Crested Auklets (Aethia cristatella) and Short-tailed Shearwaters (Puffinus tenuirostris). Total abundance of seabirds declined in three of four strata in the eastern Chukchi Sea, largely due to declines in densities of piscivorous and omnivorous species. These changes in the abundance and community composition of seabirds were associated with changes in ice cover. Earlier ice retreat appears to contribute to an environment that is more favorable to the sustained production of large oceanic copepods and euphausiids. We propose that long-term changes (4 decades) in the abundance and composition of the seabird community reflect an increase in the availability of large zooplankton prey in the region.


Chukchi Sea Sea ice Climate change Aethia spp. 

Supplementary material

300_2016_1924_MOESM1_ESM.pdf (185 kb)
Supplementary material 1 (PDF 184 kb)


  1. Aagaard K, Roach AT (1990) Arctic ocean-shelf exchange: measurements in Barrow Canyon. J Geophys Res 95:18163–18175. doi:10.1029/JC095iC10p18163 CrossRefGoogle Scholar
  2. Ainley DG, Clarke ED, Arrigo K, Fraser WR, Kato A, Barton KJ, Wilson PR (2005) Decadal-scale changes in the climate and biota of the Pacific sector of the Southern Ocean, 1950s to the 1990s. Antarct Sci 17:171–182. doi:10.1017/S0954102005002567 CrossRefGoogle Scholar
  3. Ainley D, Ribic C, Woehler E (2012) Adding the ocean to the study of seabirds: a brief history of at-sea seabird research. Mar Ecol Progr Ser 451:231–243. doi:10.3354/meps09524 CrossRefGoogle Scholar
  4. Anderson MJ (2001) A new method for non parametric multivariate analysis of variance. Aust Ecol 26:32–46. doi:10.1111/j.1442-9993.2001.01070 Google Scholar
  5. Arrigo KR, van Dijken G, Pabi S (2008) Impact of a shrinking Arctic ice cover on marine primary production. Geophys Res Lett 35:L19603. doi:10.1029/2008GL035028 CrossRefGoogle Scholar
  6. Ashjian CJ, Braund SR, Campbell RG, Geroge JC, Kruse J, Maslowski W, Moore SE, Nicolson CR, Okkonen SR, Sherr BF, Sherr EB, Spitz YF (2010) Climate variability, oceanography, bowhead whale distribution, and Iñupiat subsistence whaling near Barrow, Alaska. Arctic 63:179–194CrossRefGoogle Scholar
  7. Beaugrand G (2009) Decadal changes in climate and ecosystems in the North Atlantic Ocean and adjacent seas. Deep Sea Res Part II Top Stud Oceanogr 56:656–673. doi:10.1016/j.dsr2.2008.12.022 CrossRefGoogle Scholar
  8. Berline L, Spitz YH, Ashjian CJ, Campbell RG, Maslowski W, Moore SE (2008) Euphausiid transport in the western Arctic Ocean. Mar Ecol Progr Ser 360:163–178. doi:10.3354/meps07387 CrossRefGoogle Scholar
  9. Bluhm BA, Gebruk AV, Gradinger R, Hopcroft RR, Huettmann F, Kosobokova KN, Sirenko BI, Weslawski JM (2011) Arctic marine biodiversity: an update of species richness and examples of biodiversity change. Oceanography 24:232–248CrossRefGoogle Scholar
  10. Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27:325–349CrossRefGoogle Scholar
  11. Brown Z, Arrigo K (2012) Contrasting trends in sea ice and primary production in the Bering Sea and Arctic Ocean. ICES J Mar Sci 69:1180–1193CrossRefGoogle Scholar
  12. Brown RGB, Gaskin DE (1988) The pelagic ecology of the Grey and Red-necked Phalaropes phalaropes Phalaropus fulicarius and P. lobatus in the Bay of Fundy, eastern Canada. Ibis 130:234–250. doi:10.1111/j.1474-919X.1988.tb00974.x CrossRefGoogle Scholar
  13. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information–theoretic approach, 2nd edn. Springer, New York 496 pp Google Scholar
  14. Carmack E, Chapman DC (2003) Wind-driven shelf/basin exchange on an Arctic shelf: the joint roles of ice cover extent and shelf-break bathymetry. Geophys Res Lett 30:1778. doi:10.1029/2003GL017526 CrossRefGoogle Scholar
  15. Cavalieri D, Parkinson CL, Gloersen P, Zwally HJ (2008) Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I passive microwave data, 1998–2009. http://nsidc.org/data/nsidc-0051
  16. Citta JJ, Quakenbush LT, Okkonen SR, Druckenmiller ML, Maslowski W, Clement-Kinney J, Goerge JC, Brower H, Small RJ, Ashjian CJ, Harwood LA, Heide-Jorgensen MP (2015) Ecological characteristics of core-use areas used by Bering–Chukchi–Beaufort (BCB) bowhead whales, 2006–2012. Progr Oceanogr 136:201–222. doi:10.1016/j.pocean.2014.08.012 CrossRefGoogle Scholar
  17. Clarke K, Ainsworth M (1993) A method of linking multivariate community structure to environmental variables. Mar Ecol Progr Ser 92:205–219CrossRefGoogle Scholar
  18. Clarke K, Green R (1988) Statistical design and analysis for a“biological effects” study. Mar Ecol Progr Ser 46:213–226CrossRefGoogle Scholar
  19. Coachman LK, Aagaard K, Tripp RB (1975) Bering Strait: the regional physical oceanography. University of Washington Press, SeattleGoogle Scholar
  20. Day RH, Gall AE, Morgan TM, Rose JR, Plissner JH, Sanzenbacher PM, Fenneman JD, Kuletz KJ, Watts BH (2013a) Seabirds new to the eastern Chukchi and Beaufort seas, Alaska: response to a changing climate? Western Birds 44:174–182Google Scholar
  21. Day RH, Weingartner TJ, Hopcroft RR, Aerts LAM, Blanchard AL, Gall AE, Gallaway BJ, Hannay DE, Holladay BA, Mathis JT, Norcross BL, Questel JM, Wisdom SS (2013b) The offshore northeastern Chukchi Sea, Alaska: a complex high-latitude ecosystem. Cont Shelf Res 67:147–165. doi:10.1016/j.csr.2013.02.002 CrossRefGoogle Scholar
  22. Dragoo DE, Kettle AB, Bolin DE (2012) Biological monitoring at Cape Lisburne, Alaska in 2012. U.S. Fish and Wildlife Service report AMNWR2012/06. Homer, Alaska. https://absilcc.org/science/amnwr/sitepages/library.aspx
  23. Dragoo DE, Renner HM, Irons DB (2015) Breeding status and population trends of seabirds in Alaska, 2014. U.S. Fish and Wildlife Service report AMNWR2015/03. Homer, Alaska. https://absilcc.org/science/amnwr/sitepages/library.aspx
  24. Ershova EA, Hopcroft RR, Kosobokova KN, Matsuno K, Nelson RJ, Yamaguchi A, Eisner LB (2015) Long-term changes in summer zooplankton communities of the western Chukchi Sea, 1945–2012. Oceanography 28:100–115CrossRefGoogle Scholar
  25. Gall AE, Day RH, Weingartner TJ (2013) Structure and variability of the marine-bird community in the northeastern Chukchi Sea. Cont Shelf Res 67:96–115. doi:10.1016/j.csr.2012.11.004 CrossRefGoogle Scholar
  26. Golet GH, Irons DB, Estes JA (1998) Survival costs of chick rearing in Black-legged Kittiwakes. J Anim Ecol 67:827–841. doi:10.1046/j.1365-2656.1998.00233.x CrossRefGoogle Scholar
  27. Golet GH, Schmutz JA, Irons DB, Estes JA (2004) Determinants of reproductive costs in the long-lived Black-legged Kittiwake: a multiyear experiment. Ecol Monogr 74:353–372CrossRefGoogle Scholar
  28. Gould PJ, Forsell DJ (1989) Techniques for shipboard surveys of marine birds. Fish and Wildlife Technical Report 25, US Fish and Wildlife Service, Anchorage, AK. 24 p. http://alaska.usgs.gov/science/biology/seabirds_foragefish/products/protocols/gould_seabird_protocol.pdf
  29. Grebmeier J, Cooper L, Feder H, Sirenko B (2006a) Ecosystem dynamics of the Pacific-influenced Northern Bering and Chukchi seas in the Amerasian Arctic. Progr Oceanogr 71:331–361. doi:10.1016/j.pocean.2006.10.001 CrossRefGoogle Scholar
  30. Grebmeier JM, Overland JE, Moore SE, Farley EV, Carmack EC, Cooper LW, Frey KE, Helle JH, McLaughlin FA, McNutt SL (2006b) A major ecosystem shift in the northern Bering Sea. Science 311:1461–1464. doi:10.1126/science.1121365 CrossRefPubMedGoogle Scholar
  31. Haney JC, Stone AE (1988) Littoral foraging by Red Phalaropes during spring in the northern Bering Sea. Condor 90:723–726CrossRefGoogle Scholar
  32. Hosmer DW, Lemeshow S, Sturdivant RX (2013) Applied logistic regression, 3rd edn. Wiley, New YorkCrossRefGoogle Scholar
  33. Huettmann F, Artukhin Y, Gilg O, Humphries G (2011) Predictions of 27 Arctic pelagic seabird distributions using public environmental variables, assessed with colony data: a first digital IPY and GBIF open access synthesis platform. Mar Biodivers 41:141–179. doi:10.1007/s12526-011-0083-2 CrossRefGoogle Scholar
  34. Hunt GL, Coyle KO, Eisner LB et al (2011) Climate impacts on eastern Bering Sea foodwebs: a synthesis of new data and an assessment of the Oscillating Control Hypothesis. ICES J Mar Sci 68:1230–1243. doi:10.1093/icesjms/fsr036 CrossRefGoogle Scholar
  35. Hunt GL, Blanchard AL, Boveng P, Dalpadado P, Drinkwater KF, Eisner L, Hopcroft RR, Kovacs KM, Norcross BL, Renaud P, Reigstad M, Renner M, Skoldjal HR, Whitehouse A, Woodgate RA (2013) The Barents and Chukchi seas: comparison of two Arctic shelf ecosystems. J Mar Syst 109–110:43–68. doi:10.1016/j.jmarsys.2012.08.003 CrossRefGoogle Scholar
  36. Kitaysky AS, Golubova EG (2000) Climate change causes contrasting trends in reproductive performance of planktivorous and piscivorous alcids. J Anim Ecol 69:248–262. doi:10.1046/j.1365-2656.2000.00392.x CrossRefGoogle Scholar
  37. Kuletz KJ, Ferguson MC, Hurley B et al (2015) Seasonal spatial patterns in seabird and marine mammal distribution in the eastern Chukchi and western Beaufort seas: identifying biologically important pelagic areas. Progr Oceanogr 136:175–200CrossRefGoogle Scholar
  38. Kwasniewski S, Gluchowska M, Walkusz W, Karnovsky NJ, Jakubas D, Wojczulanis-Jakubas K, Harding AMA, Goszczko I, Cisek M, Beszczynska-Moller A, Walczowski W, Weslawski JM, Stempniewicz L (2012) Interannual changes in zooplankton on the West Spitsbergen Shelf in relation to hydrography and their consequences for the diet of planktivorous seabirds. ICES J Mar Sci 69:890–901. doi:10.1093/icesjms/fss076 CrossRefGoogle Scholar
  39. Lane P, Llinas L, Smith S, Pilz D (2008) Zooplankton distribution in the western Arctic during summer 2002: hydrographic habitats and implications for food chain dynamics. J Mar Syst 70:97–133. doi:10.1016/j.jmarsys.2007.04.001 CrossRefGoogle Scholar
  40. Laxon SW, Giles KA, Ridout AL et al (2013) CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys Res Lett 40:1–6. doi:10.1002/GRL.50193 CrossRefGoogle Scholar
  41. Magurran AE (2004) Measuring biological diversity. Blackwell Publishing, MaldenGoogle Scholar
  42. Mathis JT, Pickart RS, Byrne RH, McNeil CL, Moore GWK, Juranek LW, Liu X, Ma J, Easley RA, Elliot MM, Cross JN, Reisdorph SC, Bahr F, Morison J, Lichendorf T, Feely RA (2012) Storm-induced upwelling of high pCO2 waters onto the continental shelf of the western Arctic Ocean and implications for carbonate mineral saturation states. Geophys Res Lett 39:L07606. doi:10.1029/2012GL051574 CrossRefGoogle Scholar
  43. Matsuno K, Yamaguchi A, Hirawake T, Imai I (2011) Year-to-year changes of the mesozooplankton community in the Chukchi Sea during summers of 1991, 1992 and 2007, 2008. Polar Biol 34:1349–1360. doi:10.1007/s00300-011-0988-z CrossRefGoogle Scholar
  44. Mueter FJ, Litzow MA (2008) Sea ice retreat alters the biogeography of the Bering Sea continental shelf. Ecol Appl 18:309–320CrossRefPubMedGoogle Scholar
  45. Oksanen J, Guillaume Blanchet F, Kindt R et al (2011) Vegan: community ecology package. http://vegan.r-forge.r-project.org/
  46. Orben RA, Irons DB, Paredes R, Roby DD, Phillips RA, Shaffer SA (2015a) North or South? Niche separation of endemic Red-legged Kittiwakes and sympatric Black-legged Kittiwakes during their non-breeding migrations. J Biogeogr 42:401–412CrossRefGoogle Scholar
  47. Orben RA, Paredes R, Roby DD, Irons DB, Shaffer SA (2015b) Body size affects individual winter foraging strategies of Thick-billed Murres in the Bering Sea. J Anim Ecol 84:1589–1599. doi:10.1111/1365-2656.12410 CrossRefPubMedGoogle Scholar
  48. Palmer MA, van Dijken GL, Mitchell BG, Seegers BJ, Lowry KE, Mills MM, Arrigo KR (2013) Light and nutrient control of photosynthesis in natural phytoplankton populations from the Chukchi and Beaufort seas, Arctic Ocean. Limnol Oceanogr 58:2185–2205. doi:10.4319/lo.2013.58.6.2185 CrossRefGoogle Scholar
  49. Piatt JF, Springer AM (2003) Advection, pelagic food webs and the biogeography of seabirds in Beringia. Mar Ornithol 31:141–154Google Scholar
  50. Questel JM, Clarke C, Hopcroft RR (2013) Seasonal and interannual variation in the planktonic communities of the northeastern Chukchi Sea during the summer and early fall. Cont Shelf Res 67:23–41. doi:10.1016/j.csr.2012.11.003 CrossRefGoogle Scholar
  51. R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org
  52. Schwemmer P, Mendel B, Sonntag N et al (2011) Effects of ship traffic on seabirds in offshore waters: implications for marine conservation and spatial planning. Ecol Appl 21:1851–1860CrossRefPubMedGoogle Scholar
  53. Sigler M, Renner M, Danielson S, Eisner L (2011) Fluxes, fins, and feathers: relationships among the Bering, Chukchi, and Beaufort seas in a time of climate change. Oceanography 24:250–265CrossRefGoogle Scholar
  54. Snell RR (2002) Thayer’s Gull (Larus glaucoides). In: Poole A (ed) The birds of North America online. No. 699, Cornell Lab of Ornithology, Ithaca, NY. http://bna.birds.cornell.edu/bna/species/699b
  55. Springer AM, McRoy CP (1993) The paradox of pelagic food webs in the northern Bering Sea—III. Patterns of primary production. Cont Shelf Res 13:575–599CrossRefGoogle Scholar
  56. Springer A, McRoy C, Turco KR (1989) The paradox of pelagic food webs in the northern Bering Sea—II. Zooplankton communities. Cont Shelf Res 9:359–386. doi:10.1016/0278-4343(89)90039-3 CrossRefGoogle Scholar
  57. Stabeno PJ, Jr Farley E V, Kachel NB, Moore S, Mordy CW, Napp JM, Overland JE, Pinchuk AI, Sigler MF (2012) A comparison of the physics of the northern and southern shelves of the eastern Bering Sea and some implications for the ecosystem. Deep Sea Res Part II Top Stud Oceanogr 65–70:14–30. doi:10.1016/j.dsr2.2012.02.019 CrossRefGoogle Scholar
  58. Swartz LG (1967) Distribution and movement of birds in the Bering and Chukchi seas. Pacific Sci 21:332–347Google Scholar
  59. Sydeman WJ, Thompson SA, Kitaysky A (2012) Seabirds and climate change: roadmap for the future. Mar Ecol Progr Ser 454:107–117. doi:10.3354/meps09806 CrossRefGoogle Scholar
  60. Tasker ML, Hope Jones P, Dixon T, Blake BF (1984) Counting seabirds at sea from ships: a review of methods employed and a suggestion for a standardized approach. Auk 101:567–577Google Scholar
  61. U.S. Department of State (1990) Agreement with the Union of Soviet Socialist Republics on the maritime boundary. Senate Treaty Document 101–22. http://www.state.gov/e/oes/ocns/opa/c28187.htm
  62. USGS (2014) North Pacific Pelagic Seabird Database. http://alaska.usgs.gov/science/biology/nppsd/index.php
  63. Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New YorkCrossRefGoogle Scholar
  64. Walsh J, McRoy C, Coachman L, Goering JJ, Nihoul JJ, Whitledge TE, Blackburn TH, Parker PL, Wirick CD, Shuert PG, Grebmeier JM, Speinger AM, Tripp RD, Hansell DA, Djenidi S, Deleersnijder E, Henriksen K, Lund BA, Andersen P, Müller-Karger FE, Dean K (1989) Carbon and nitrogen cycling within the Bering/Chukchi Seas: source regions for organic matter affecting AOU demands of the Arctic Ocean. Progr Oceanogr 22:277–359CrossRefGoogle Scholar
  65. Wang M, Overland JE (2009) A sea ice free summer Arctic within 30 years? Geophys Res Lett 36:L07502. doi:10.1029/2012GL052868 Google Scholar
  66. Wang M, Overland JE, Stabeno P (2012) Future climate of the Bering and Chukchi seas projected by global climate models. Deep Res Part II 65–70:46–57. doi:10.1016/j.dsr2.2012.02.022 CrossRefGoogle Scholar
  67. Weingartner T, Cavalieri D, Aagaard K, Sasaki Y (1998) Circulation, dense water formation, and outflow on the northeast Chukchi shelf. J Geophys Res 103:7647–7661CrossRefGoogle Scholar
  68. Weingartner TJ, Danielson S, Sasaki Y, Pavlov V, Kulakov M (1999) The Siberian Coastal Current: a wind- and buoyancy-forced Arctic coastal current. J Geophys Res 104:29697. doi:10.1029/1999JC900161 CrossRefGoogle Scholar
  69. Weingartner T, Aagaard K, Woodgate R, Danielson S, Sasaki Y, Cavalieri D (2005) Circulation on the north central Chukchi Sea shelf. Deep Sea Res Part II Top Stud Oceanogr 52:3150–3174. doi:10.1016/j.dsr2.2005.10.015 CrossRefGoogle Scholar
  70. Weingartner T, Dobbins E, Danielson S, Winsor P, Potter R, Statscewich H (2013) Hydrographic variability over the northeastern Chukchi Sea shelf in summer–fall 2008–2010. Cont Shelf Res 67:5–22. doi:10.1016/j.csr.2013.03.012 CrossRefGoogle Scholar
  71. Wong SN, Gjerdrum C, Morgan KH, Mallory ML (2014) Hotspots in cold seas: the composition, distribution, and abundance of marine birds in the North American Arctic. J Geophys Res Ocean 119:1691–1705. doi:10.1002/2013JC009198 CrossRefGoogle Scholar
  72. Woodgate RA, Weingartner TJ, Lindsay R (2012) Observed increases in Bering Strait oceanic fluxes from the Pacific to the Arctic from 2001 to 2011 and their impacts on the Arctic Ocean water column. Geophys Res Lett. doi:10.1029/2012GL054092 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Adrian E. Gall
    • 1
    • 2
  • Tawna C. Morgan
    • 1
  • Robert H. Day
    • 1
  • Katherine J Kuletz
    • 3
  1. 1.ABR, Inc.—Environmental Research and ServicesFairbanksUSA
  2. 2.Institute of Marine Sciences, 245 O’Neill BuildingUniversity of AlaskaFairbanksUSA
  3. 3.U.S. Fish and Wildlife ServiceAnchorageUSA

Personalised recommendations