Polar Biology

, Volume 39, Issue 5, pp 881–895 | Cite as

Ophiuroid biodiversity patterns along the Antarctic Peninsula

  • Stefano Ambroso
  • Astrid Böhmer
  • Pablo López-González
  • Núria Teixidó
Original Paper
  • 195 Downloads

Abstract

Benthic ecological surveys using standardized methods are crucial for assessing changes associated with several threats in the Southern Ocean. The acquisition of data on assemblage structure over a variety of spatial scales is important to understand the variation of biodiversity patterns. During the ANT XXIX/3 (PS81) expedition of RV Polarstern, three different regions at the tip of the Antarctic Peninsula were sampled: the northwestern Weddell Sea, the Bransfield Strait, and the northern boundary of the South Shetland Archipelago in the Drake Passage. The aim of this study was to characterize the distribution and biodiversity patterns of ophiuroid assemblages in these regions and depths. We quantified different community parameters in terms of the number of species, abundance, and biomass. Additionally, we calculated various components of species diversity (alpha, beta, and gamma diversity) over the three regions. Based on the benthic surveys, we collected 3331 individuals that were identified to species level (17 species). Overall, species diversity, as measured based on rarefaction, species richness and evenness estimators, was higher in the Bransfield Strait compared to the Weddell Sea and Drake Passage. Two deep stations in the Weddell Sea showed high dominance only of Ophionotus victoriae. Significant differences in the patterns of alpha diversity were found among the regions but not between depth zones, whereas beta diversity showed no differences. Regarding the resemblance among the ophiuroid assemblages of each region, there was a significant gradient from east to west with a maximum distance between the stations in the Drake Passage and the Weddell Sea. This study provides a baseline for detecting potential effects related to climate change, and it furnishes a basis for the implementation of monitoring schemes of Antarctic assemblages.

Keywords

Benthos Community Climate change Diversity Distribution Southern Ocean Standardized protocol 

Supplementary material

300_2016_1911_MOESM1_ESM.xlsx (13 kb)
Supplementary material 1 (XLSX 12 kb)
300_2016_1911_MOESM2_ESM.docx (16 kb)
Supplementary material 2 (DOCX 16 kb)

References

  1. Anderson JB (1999) Antarctic marine geology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  2. Anderson MJ (2001a) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46Google Scholar
  3. Anderson MJ (2001b) Permutation tests for univariate or multivariate analysis of variance and regression. Can J Fish Aquat Sci 58:626–639CrossRefGoogle Scholar
  4. Anderson MJ, Gorley R, Clarke K (2008) PERMANOVA for PRIMER: guide to software and statistical methods. PRIMER-E Ltd, Plymouth, p 214Google Scholar
  5. Anderson MJ, Crist TO, Chase JM, Vellend M, Inouye BD, Freestone AL, Sanders NJ, Cornell HV, Comita LS, Davies KF, Harrison SP, Kraft NJB, Stegen JC, Swenson NG (2011) Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol Lett 14:19–28CrossRefPubMedGoogle Scholar
  6. Arntz WE, Brey T, Gallardo V (1994) Antarctic zoobenthos. Oceanogr Mar Biol 32:241–304Google Scholar
  7. Aronson RB, Thatje S, Clarke A, Peck LS, Blake DB, Wilga CD, Seibel BA (2007) Climate change and invasibility of the Antarctic benthos. Annu Rev Ecol Syst 38:129–154CrossRefGoogle Scholar
  8. Balsega A (2010) Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr 19:134–143CrossRefGoogle Scholar
  9. Balvanera P, Pfisterer AB, Buchmann N, He JS, Nakashizuka T, Raffaelli D, Schmid B (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156CrossRefPubMedGoogle Scholar
  10. Barnes DKA, Conlan KW (2007) Disturbance, colonization and development of Antarctic benthic communities. Phil Trans R Soc B 362:11–38CrossRefPubMedPubMedCentralGoogle Scholar
  11. Barnes DKA, Peck LS (2008) Vulnerability of Antarctic shelf biodiversity to predicted climate change. Clim Res 37:149–163CrossRefGoogle Scholar
  12. Barnes DKA, Griffiths HJ, Kaiser S (2009) Geographic rage shift responses to climate change by Antarctic benthos: where we should look. Mar Ecol Progr Ser 393:13–26CrossRefGoogle Scholar
  13. Bell FJ (1902) Echinoderma. Report on the collections of Natural History made in the Antarctic Regions during the voyage of the “Southern Cross”. London, pp 214–220Google Scholar
  14. Bell FJ (1908) Echinoderma. National Antarctic Expedition 1901–1904. Rep Nat Hist 4, Zool, London, pp 1–16Google Scholar
  15. Bernasconi I, D’Agostino MM (1977) Ophiuroideos del mar epicontinental argentino. Rev Mus Arg Cienc Nat Bernard Rivad 5:66–114Google Scholar
  16. Björgo E, Johannessen OM, Miles MW (1997) Analysis of merged SMMR-SSMI time series of Arctic and Antarctic sea ice parameters 1978–1995. GRL 24(4):413–416. doi:10.1029/96GL04021 CrossRefGoogle Scholar
  17. Brandt A, De Broyer C, De Mesel I, Ellingsen KE, Gooday AJ, Hilbig B, Linse K, Thomson MRA, Tyler PA (2007) The biodiversity of the deep Southern Ocean benthos. Phil Trans R Soc B 362:39–66CrossRefPubMedPubMedCentralGoogle Scholar
  18. Brey T, Dahm C, Gorny M, Klages M, Stiller M, Arntz WE (1996) Do Antarctic benthic invertebrates show an extended level of eurybathy? Antarct Sci 8:3–6CrossRefGoogle Scholar
  19. Clarke KR, Warwick RM (1994) Change in marine communities: an approach to statistical analysis and interpretation. Bourne Press Limited, BournemouthGoogle Scholar
  20. Clarke A, Murphy EJ, Meredith MP, King JC, Peck LS, Barnes DKA, Smith RC (2007) Climate change and the marine ecosystem of the western Antarctic Peninsula. Phil Trans R Soc B Biol Sci 362:149–166CrossRefGoogle Scholar
  21. Clarke A, Griffiths HJ, Barnes DKA, Meredith MP, Grant SM (2009) Spatial variation in seabed temperatures in the Southern Ocean: implications for benthic ecology and biogeography. J Geophys Res. doi:10.1029/2008JG000886 Google Scholar
  22. Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Philos Trans R Soc Lond 345:101–118CrossRefGoogle Scholar
  23. Cook AJ, Fox AJ, Vaughan DG, Ferrigno DG (2005) Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science 308:541–544CrossRefPubMedGoogle Scholar
  24. Dahm C (1999) Ophiuroids (Echinodermata) of southern Chile and the Antarctic: taxonomy, biomass, diet and growth of dominant species. In: Arntz W, Ríos C (eds) Magellan-Antarctic: ecosystems that drifted apart. Sci Mar 63:427–432Google Scholar
  25. Dell RK (1972) Antarctic benthos. Adv Mar Biol 10:1–216CrossRefGoogle Scholar
  26. Domack E, Duran D, Leenter A, Ishman S, Doane S, McCallum S, Amblas D, Ring J, Gilbert R, Prentice M (2005) Stability of the Larsen B ice shelf on the Antarctic Peninsula during the Holocene epoch. Nature 436:681–685CrossRefPubMedGoogle Scholar
  27. Dorschel B, Gutt J, Huhn O, Bracher A, Huntemann M, Gebhardt C, Huneke W, Schröder M (in press) Environmental information for a marine ecosystem research approach for the northern Antarctic Peninsula (RV Polarstern Expedition PS81, ANT-XXIX/3). Polar BiolGoogle Scholar
  28. Ellingsen KE (2001) Biodiversity of a continental shelf soft-sediment macrobenthos community. Mar Ecol Prog Ser 218:1–15CrossRefGoogle Scholar
  29. Fell HB (1961) The fauna of the Ross Sea. Part 1. Ophiuroidea. N Z Dep Sci Ind Res Bull 142:1–79Google Scholar
  30. Fell HB, Holzinger T, Sherraden M (1969) Ophiuroidea. Distribution of selected groups of marine invertebrates in waters south of 35°S latitude. Antarct Map Fol Ser Am Geogr Soc 11:42–43Google Scholar
  31. Foldvik A, Gammelsrød T, Østerhus S, Fahrbach E, Rohardt G, Schröder M, Nicholls K, Padman L, Woodgate R (2004) Ice shelf water overflow and bottom water formation in the southern Weddell Sea. J Geophys Res 109:C02015. doi:10.1029/2003JC002008 Google Scholar
  32. Fraser WR, Hofmann EE (2003) A predator’s perspective on causal links between climate change, physical forcing and ecosystem response. Mar Ecol Prog Ser 265:1–15CrossRefGoogle Scholar
  33. Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391CrossRefGoogle Scholar
  34. Griffiths HJ (2010) Antarctic marine biodiversity—What do we know about the distribution of life in the Southern Ocean? PLoS One 5:e11683CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gutt J (2013) The expedition of the research vessel Polarstern to the Antarctic in 2013 (ANT-XXIX/3). Ber Polar Meeresforsch 665:1–151Google Scholar
  36. Gutt J, Bertler N, Bracegirdle TJ, Buschmann A, Comiso J, Hosie G, Isla E, Schloss IR, Smith CR, Tournadre J, Xavier JC (2015a) The Southern Ocean ecosystem under multiple climate stresses—an integrated circumpolar assessment. Glob Change Biol 21:1434–1453. doi:10.1111/geb.12794 CrossRefGoogle Scholar
  37. Gutt J, Alvaro MC, Barco A, Böhmer A, Bracher A, David B, De Ridder C, Dorschel B, Eléaume M, Janussen D, Kersken D, López-González PJ, Martínez-Baraldés I, Schröder M, Segelken-Voigt A, Teixidó N (2015b) Macro-epibenthic communities at the tip of the Antarctic Peninsula, an ecological survey at different spatial scales. Polar Biol. doi:10.1007/s00300-015-1797-6 Google Scholar
  38. Hendler G (1975) Adaptational significance o the pattern of ophiuroid development. Am Zool 15:691–715CrossRefGoogle Scholar
  39. Hendler G, Tran LU (2001) Reproductive biology of a deep-sea brittle star Amphiura carchara (Echinodermata: Ophiuroidea). Mar Biol 138:113–123CrossRefGoogle Scholar
  40. Hertz M (1927) Die Ophiuroiden der Deutschen Südpolar-Expedition (1901–1903). Dtsch Südpolar Exped (1901–1903) 2:1–56Google Scholar
  41. Hoffman JI, Peck LS, Linse K, Clarke A (2010) Strong population genetic structure in a broadcast-spawning Antarctic marine invertebrate. J Heredity 102:55–66. doi:10.1093/jhered/esq094:1-12 CrossRefGoogle Scholar
  42. Hofmann EE, Klinck JM, Lascara CM, Smith DA (1996) Water mass distribution and circulation west of the Antarctic Peninsula and including Bransfield Strait. In: Ross RM, Hofmann EE, Quetin LB (eds) Foundations for ecological research west of the Antarctic Peninsula. American Geophysical Union, Washington, pp 61–80CrossRefGoogle Scholar
  43. Hunter RL, Halanych KM (2008) Evaluating connectivity in the brooding brittle star Astrotoma agassizii across the Drake Passage in the Southern Ocean. J Hered 99:137–148CrossRefPubMedGoogle Scholar
  44. Hunter RL, Halanych KM (2010) Phylogeography of the Antarctic planktotrophic brittle star Ophionotus victoriae reveals genetic structure inconsistent with early life history. Mar Biol 157:1693–1704CrossRefGoogle Scholar
  45. Jerosch K, Kuhn G, Krajnik I, Scharf FK, Dorschel B (2015) A geomorphological seabed classification for the Weddell Sea, Antarctica. Mar Geophys Res. doi:10.1007/s11001-015-9256-x Google Scholar
  46. Jost L, DeVries P, Walla T, Greeney H, Chao A, Ricotta C (2010) Partitioning diversity for conservation analyses. Divers Distrib 16:65–76CrossRefGoogle Scholar
  47. Kaiser S, Brandão SN, Brix S, Barnes DKA, Bowden DA, Ingels J, Paszkowycz M, Brandt A, Brenke N, Catarino AI, David B, Ridder C, Dubois P, Ellingsen KE, Glover AG, Griffiths HJ, Gutt J, Halanych KM, Havermans C, Held C, Janussen D, Lörz AN, Pearce DA, Pierrat B, Riehl T, Rose A, Sands CJ, Soler-Membrives A, Schüller M, Strugnell JM, Vanreusel A, Veit-Köhler G, Wilson NG, Yasuhara M (2013) Patterns, processes and vulnerability of Southern Ocean benthos: a decadal leap in knowledge and understanding. Mar Biol 160:2295–2317CrossRefGoogle Scholar
  48. Koehler R (1901) Echinides et Ophiures. Resultats du voyage du S.Y. Belgica 1897–1899. Buschmann, AnversGoogle Scholar
  49. Koehler R (1908) Astéries, Ophiures et Echinides de l’Expédition Antarctique Nationale Ecossaise. Trans R Soc Edinb 46:529–649CrossRefGoogle Scholar
  50. Koehler R (1912) Échinodermes (Aste´ries, Ophiures et Echinides). Deux Expéd Antarct Franc 1908–1910. Masson, ParisGoogle Scholar
  51. Koehler R (1922) Echinodermata Ophiuroidea. Adelaide: Australasian Antarctic expedition (1911–1914). Sci Rep Ser C Zool Bot 8:1–98Google Scholar
  52. Koehler R (1923) Astéries et Ophiures. Further zoological results of the Swedish Antactic Expedition (1901–1903) 1:1–145Google Scholar
  53. Lockhart SJ, Jones CD (2008) Biogeographic patterns of benthic invertebrate megafauna on shelf areas with the Southern Ocean Atlantic sector. CCAMLR Sci 15:167–192Google Scholar
  54. Lourie SA, Vincent ACJ (2004) Using biogeography to help set priorities in marine conservation. Conserv Biol 18:1004–1020CrossRefGoogle Scholar
  55. Ludwig H (1899) Ophiuroiden. Hamburger magalhaens. Sammelr 1:1–28Google Scholar
  56. Lyman T (1875) Results of the Hassler expedition (excluding Ophiuroidea and Astrophytidae). Illus Cat Mus Comp Zool Harv Univ 8(2):1–43Google Scholar
  57. Lyman T (1882) Report on the Ophiuroidea. Rep Sci Voyage HMS Challenger 1873–1876. Zool 5(14):1–386Google Scholar
  58. Magurran A, McGill BJ (2011) Biological diversity. Oxford University Press, OxfordGoogle Scholar
  59. Magurran AE, Baillie SR, Buckland ST, Dick JM, Elston DA, Scott EM, Smith RI, Somerfield PJ, Watt AD (2010) Long-term datasets in biodiversity research and monitoring: assessing change in ecological communities through time. Trends Ecol Evol 25:574–582CrossRefPubMedGoogle Scholar
  60. Manjón-Cabeza ME, Ramos A (2003) Ophiuroid community structure of the South Shetland Islands and Antarctic Peninsula region. Polar Biol 26:691–699CrossRefGoogle Scholar
  61. Martín-Ledo R, López-González PJ (2014) Brittle stars from Southern Ocean (Echinodermata: Ophiuroidea). Polar Biol 37:73–88CrossRefGoogle Scholar
  62. Martynov A (2010) Reassessment of the classification of the Ophiuroidea (Echinodermata), based on morphological characters. I. General character evaluation and delineation of the families Ophiomyxidae and Ophiacanthidae. Zootaxa 2697:1–154Google Scholar
  63. Meredith MP, King JC (2005) Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the twentieth century. Geophys Res Lett 32:1–5Google Scholar
  64. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being. Island Press, WashingtonGoogle Scholar
  65. Moles J, Figuerola B, Campanyà-Llovet N, Monleón-Getino T, Taboada S, Avila C (2014) Distribution patterns in Antarctic and Subantarctic echinoderms. Polar Biol 38:799–813CrossRefGoogle Scholar
  66. Montes-Hugo M, Doney SC, Ducklow HW, Fraser W, Martinson D, Stammerjohn SE, Schofield O (2009) Recent changes in phytoplankton communities associated with rapid regional climate change along the western Antarctic Peninsula. Science 323:1470–1473CrossRefPubMedGoogle Scholar
  67. Mortensen T (1936) Echinoidea and Ophiuroidea. Discov Rep 12:199–348CrossRefGoogle Scholar
  68. O’Hara RB (2005) Species richness estimators: how many species can dance on the head of a pin? J Anim Ecol 74:375–386CrossRefGoogle Scholar
  69. O’Hara TD, Rowden AA, Bax NJ (2011) A southern hemisphere bathyal fauna is distributed in latitudinal bands. Curr Biol 21:22–230CrossRefGoogle Scholar
  70. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Ann Rev Ecol Evol Syst 37:637–669CrossRefGoogle Scholar
  71. Peck LS, Convey P, Barnes DKA (2006) Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Biol Rev 81:75–109CrossRefPubMedGoogle Scholar
  72. Piepenburg D, Schmid MK (1996) Brittle star fauna (Echinodermata: Ophiuroidea) of the Arctic northwestern Barents Sea: composition, abundance, biomass and spatial distribution. Polar Biol 16:383–392CrossRefGoogle Scholar
  73. Piepenburg D, von Juterzenka K (1994) Abundance, biomass and spatial distribution patterns of brittle stars (Echinodermata: Ophiuroidea) on the Kolbeinsey Ridge north of Iceland. Polar Biol 14:185–194CrossRefGoogle Scholar
  74. Piepenburg D, Voß J, Gutt J (1997) Assemblages of sea stars (Echinodermata: Asteroidea) and brittle stars (Echinodermata: Ophiuroidea) in the Weddell Sea (Antarctica) and off Northeast Greenland (Arctic): A comparison of diversity and abundance. Polar Biol 17:305–322CrossRefGoogle Scholar
  75. Sanderson WG (1996) Rarity of marine benthic species in Great Britain: development and application of assessment criteria. Aquat Conserv 6:245–256CrossRefGoogle Scholar
  76. Sands CJ, Griffiths HJ, Downey R, Barnes DKA, Linse K, Martín-Ledo R (2012) Observations of the ophiuroids from the West Antarctic sector of the Southern Ocean. Antarct Sci 25:3–10CrossRefGoogle Scholar
  77. Smale DA, Barnes DKA (2008) Likely responses of the Antarctic benthos to climate-related changes in physical disturbance during the twenty-first century, based primarily on evidence from the West Antarctic Peninsula region. Ecography 31:289–305CrossRefGoogle Scholar
  78. Smith CR, De Leo FC, Bernardino AF, Sweetman AK, Martinez Arbizu P (2008) Abyssal food limitation, ecosystem structure and climate change. Trends Ecol Evol 23:518–528CrossRefPubMedGoogle Scholar
  79. Stammerjohn SE, Martinson DG, Smith RC, Iannuzzi RA (2008) Sea ice in the western Antarctic Peninsula region: Spatio-temporal variability from ecological and climate change perspectives. Deep Sea Res II 55:2041–2058CrossRefGoogle Scholar
  80. Studer T (1876) Echinodermen aus dem antarktischen Meere und zwei neue Seeigel von den Papua Inseln, gesammelt auf der Reise SMS Gazelle um die Erde. Akad Wiss, Berlin, pp 452–465Google Scholar
  81. Thatje S, Anger K, Calcagno JA, Lovrich GA, Pörtner H-O, Arntz WE (2005a) Challenging the cold: crabs reconquer the Antarctic. Ecology 86:619–625CrossRefGoogle Scholar
  82. Thatje S, Hillenbrand CD, Larter R (2005b) On the origin of Antarctic marine benthic community structure. Trends Ecol Evol 20:534–540CrossRefPubMedGoogle Scholar
  83. Trimborn S, Hoppe CJ, Taylor BB, Bracher A, Hassler C (2015) Physiological characteristics of open ocean and coastal phytoplankton communities of western Antarctic peninsula and drake passage waters. Deep Sea Res I 98:115–124CrossRefGoogle Scholar
  84. Turner J, Colwell SR, Marshall GJ, Lachlan-Cope TA, Carleton AM, Jones PD, Lagun V, Reid PA, Iagovkina S (2005) Antarctic climate change during the last 50 years. Int J Climatol 25:279–294CrossRefGoogle Scholar
  85. Ugland KI, Gray JS, Ellingsen KE (2003) The species-accumulation curve and estimation of species richness. J Anim Ecol 72:888–897CrossRefGoogle Scholar
  86. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395CrossRefPubMedGoogle Scholar
  87. Walther GR, Roques A, Hulme PE, Sykes MT, Pysek P, Kühn I, Zobel M, Bacher S, Botta-Dukat Z, Bugmann H, Czucz B, Dauber J, Hickler T, Jarosyk V, Kenis M, Klotz S, Minchin D, Moora M, Nentwig W, Ott J, Panov VE, Reineking B, Robinet C, Semenchenko V, Solarz Solarz W, Thuiller W, Vilà M, Vohland K, Settele J (2009) Alien species in a warmer world: risks and opportunities. Trends Ecol Evol 24:686–693CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Stefano Ambroso
    • 1
  • Astrid Böhmer
    • 2
  • Pablo López-González
    • 3
  • Núria Teixidó
    • 1
    • 4
  1. 1.Institut Ciències del Mar (ICM-CSIC)BarcelonaSpain
  2. 2.Alfred Wegener Institute Helmholtz Centre for Polar and Marine, Research, ColumbusstrBremerhavenGermany
  3. 3.Biodiversidad y Ecología de Invertebrados Marinos, Facultad de BiologíaUniversidad de SevillaSevilleSpain
  4. 4.Stazione Zoologica Anton DohrnNaplesItaly

Personalised recommendations