Advertisement

Polar Biology

, Volume 39, Issue 10, pp 1725–1738 | Cite as

Spatial and temporal variability in export fluxes of biogenic matter in Kongsfjorden

  • Catherine LalandeEmail author
  • Brivaëla Moriceau
  • Aude Leynaert
  • Nathalie Morata
Original Paper

Abstract

The marine ecosystem of Kongsfjorden experiences large variations in primary productivity due to pronounced seasonal variations in sunlight, glacier melt, and ice cover. The objective of this study was to assess spatial and seasonal variability in the downward export of biogenic matter in Kongsfjorden. Short-term sediment traps were deployed for periods ranging from 21 to 52 h at three stations from the inner fjord to the outer fjord in May, August, and October 2012 and at one mid-fjord station in January 2013. Total particulate matter, particulate organic carbon, phytoplankton cells, chlorophyll a, biogenic particulate silica, and zooplankton fecal pellet fluxes were measured to determine the magnitude and composition of the material exported in the fjord. The amount and composition of export fluxes reflected a large phytoplankton bloom grazed upon by zooplankton in May, the melting of glaciers and the intrusion of Atlantic Water in August, the end of the glacier melt period in October, and the polar night in January. Overall, seasonal changes in the phytoplankton community impacted export efficiency in the fjord, directly through phytoplankton sinking and indirectly through zooplankton grazing. Results obtained in this study may reflect the magnitude and composition of export fluxes to expect in coming years in Kongsfjorden, especially under conditions of warmer Atlantic Water and longer glacier melt periods.

Keywords

Export Biogenic matter Sediment trap Arctic Spitsbergen Kongsfjorden 

Notes

Acknowledgments

This study was funded by the Agence Nationale de la Recherche and the Institut Paul Emile Victor (IPEV) as part of the Effect of Climate on the Arctic Benthos (ECOTAB) project (Ref: ANR-11-PDOC-0018). We thank the crew of the MS Teistein and the AWIPEV personnel in Ny-Ålesund for dedicated and professional assistance. We thank Erwan Amice, Anaïs Aubert, Maria Calleja, Gwendoline Duong, Philippe Kerhervé, Fanny Narcy, Joëlle Richard, and Solveig Bourgeois for their help with field sampling, Janne Søreide for the sediment trap deployment in January, and Manon Le Goff, Beatriz Beker, Sigrid Øygarden, and Monika Kędra for laboratory analyses. We also thank Michael Greenacre and three anonymous reviewers for their constructive comments during revision.

References

  1. ACIA (2004) Impacts of a warming Arctic—Arctic climate impact assessment. ISBN 0521617782. Cambridge University Press, Cambridge, pp 144Google Scholar
  2. Bauerfeind E, Nöthig E-M, Beszczynska A, Fahl K, Kaleschke L, Kreker K, Klages M, Soltwedel T, Lorenzen C, Wegner J (2009) Particle sedimentation patterns in the eastern Fram Strait during 2000–2005: results from the Arctic long-term observatory HAUSGARTEN. Deep Sea Res Part I 56:1471–1487. doi: 10.1016/j.dsr.2009.04.011 CrossRefGoogle Scholar
  3. Berge J, Daase M, Renaud Paul E, Ambrose William G Jr, Darnis G, Last Kim S, Leu E, Cohen Jonathan H, Johnsen G, Moline Mark A, Cottier F, Varpe Ø, Shunatova N, Bałazy P, Morata N, Massabuau J-C, Falk-Petersen S, Kosobokova K, Hoppe Clara JM, Węsławski Jan M, Kukliński P, Legeżyńska J, Nikishina D, Cusa M, Kędra M, Włodarska-Kowalczuk M, Vogedes D, Camus L, Tran D, Michaud E, Gabrielsen Tove M, Granovitch A, Gonchar A, Krapp R, Callesen Trine A (2015) Unexpected levels of biological activity during the polar night offer new perspectives on a warming Arctic. Curr Biol 25:2555–2561. doi: 10.1016/j.cub.2015.08.024 CrossRefPubMedGoogle Scholar
  4. Beszczynska-Möller A, Fahrbach E, Schauer U, Hansen E (2012) Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010. ICES J Mar Sci 69:852–863. doi: 10.1093/icesjms/fss056 CrossRefGoogle Scholar
  5. Cottier F, Tverberg V, Inall M, Svendsen H, Nilsen F, Griffiths C (2005) Water mass modification in an Arctic fjord through cross-shelf exchange: the seasonal hydrography of Kongsfjorden, Svalbard. J Geophys Res Oceans. doi: 10.1029/2004JC002757 Google Scholar
  6. Cottier FR, Nilsen F, Inall ME, Gerland S, Tverberg V, Svendsen H (2007) Wintertime warming of an Arctic shelf in response to large-scale atmospheric circulation. Geophys Res Lett. doi: 10.1029/2007GL029948 Google Scholar
  7. Cowie GL, Hedges JI (1996) Digestion and alteration of the biochemical constituents of a diatom (Thalassiosira weissflogii) ingested by an herbivorous copepod (Calanus pacificus). Limnol Oceanogr 41:581–594CrossRefGoogle Scholar
  8. González HE, Smetacek V (1994) The possible role of the cyclopoid copepod Oithona similis in retarding the vertical flux of zooplankton faecal material. Mar Ecol Prog Ser 113:233–246CrossRefGoogle Scholar
  9. González HE, Gonzalez SR, Brummer G-JA (1994) Short-term sedimentation pattern of zooplankton, faeces and microplankton at a permanent station in the Bjornafjorden (Norway) during April–May 1992. Mar Ecol Prog Ser 105:31–45CrossRefGoogle Scholar
  10. González HE, Ortiz VC, Sobarzo M (2000) The role of faecal material in the particulate organic carbon flux in the northern Humboldt Current, Chile (23 S), before and during the 1997–1998 El Niño. J Plankton Res 22:499–529CrossRefGoogle Scholar
  11. Hasle GR (1978) The inverted microscope method. In: Sournia A (ed) Phytoplankton manual. UNESCO, Paris, pp 88–96Google Scholar
  12. Hegseth EN, Tverberg V (2013) Effect of Atlantic water inflow on timing of the phytoplankton spring bloom in a high Arctic fjord (Kongsfjorden, Svalbard). J Mar Syst 113–114:94–105. doi: 10.1016/j.jmarsys.2013.01.003 CrossRefGoogle Scholar
  13. Hodal H, Falk-Petersen S, Hop H, Kristiansen S, Reigstad M (2012) Spring bloom dynamics in Kongsfjorden, Svalbard: nutrients, phytoplankton, protozoans and primary production. Polar Biol 35:191–203. doi: 10.1007/s00300-011-1053-7 CrossRefGoogle Scholar
  14. Holm-Hansen O, Lorenzen CJ, Holmes RW, Strickland JDH (1965) Fluorometric determination of chlorophyll. J Conseil 30:3–15. doi: 10.1093/icesjms/30.1.3 CrossRefGoogle Scholar
  15. Hop H, Pearson T, Nøst Hegseth E, Kovacs KM, Wiencke C, Kwasniewski S, Eiane K, Mehlum F, Gulliksen B, Wlodarska-Kowalczuk M, Lydersen C, Weslawski JM, Cochrane S (2002) The marine ecosystem of Kongsfjorden, Svalbard. Polar Res 21:42. doi: 10.3402/polar.v21i1.6480 CrossRefGoogle Scholar
  16. Kraft A, Bauerfeind E, Nöthig E-M (2011) Amphipod abundance in sediment trap samples at the long-term observatory HAUSGARTEN (Fram Strait, ∼79°N/4°E). Variability in species community patterns. Mar Biodivers 41:353–364. doi: 10.1007/s12526-010-0052-1 CrossRefGoogle Scholar
  17. Lalande C, Grebmeier JM, Wassmann P, Cooper LW, Flint MV, Sergeeva VM (2007) Export fluxes of biogenic matter in the presence and absence of seasonal sea ice cover in the Chukchi Sea. Cont Shelf Res 27:2051–2065CrossRefGoogle Scholar
  18. Lalande C, Bauerfeind E, Nöthig E-M, Beszczynska-Möller A (2013) Impact of a warm anomaly on export fluxes of biogenic matter in the eastern Fram Strait. Prog Oceanogr 109:70–77. doi: 10.1016/j.pocean.2012.09.006 CrossRefGoogle Scholar
  19. Lund JWG, Kipling C, Le Cren ED (1958) The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11:143–170CrossRefGoogle Scholar
  20. Morata N, Renaud PE (2008) Sedimentary pigments in the western Barents Sea: a reflection of pelagic–benthic coupling? Deep-Sea Res Part II 55:2381–2389CrossRefGoogle Scholar
  21. Ragueneau O, Tréguer P (1994) Determination of biogenic silica in coastal waters: applicability and limits of the alkaline digestion method. Mar Chem 45:43–51CrossRefGoogle Scholar
  22. Ragueneau O, Schultes S, Bidle KD, Claquin P, Moriceau B (2006) Si and C interactions in the world ocean: Importance of ecological processes and implications for the role of diatoms in the biological pump. Glob Biogeochem Cycles 20:GB4S02. doi: 10.1029/2006GB002688 CrossRefGoogle Scholar
  23. Reigstad M, Wexels Riser C, Wassmann P, Ratkova T (2008) Vertical export of particulate organic carbon: attenuation, composition and loss rates in the northern Barents Sea. Deep Sea Res Part II 55:2308CrossRefGoogle Scholar
  24. Rysgaard S, Thamdrup B, Risgaard-Petersen N, Fossing H, Berg P, Christensen PB, Dalsgaard T (1998) Seasonal carbon and nutrient mineralization in a high-Arctic coastal marine sediment, Young Sound, Northeast Greenland. Mar Ecol Prog Ser 175:261–276CrossRefGoogle Scholar
  25. Soltwedel T, Bauerfeind E, Bergmann M, Bracher A, Budaeva N, Busch K, Cherkasheva A, Fahl K, Grzelak K, Hasemann C, Hoste E, Jacob M, Kraft A, Lalande C, Kidane YM, Metfies K, Nöthig E-M, Meyer K, Quéric N-V, Schewe I, Włodarska-Kowalczuk M, Klages M (2015) Natural variability or anthropogenically-induced variation? Insights from 15 years of multidisciplinary observations at the arctic open-ocean LTER site HAUSGARTEN. Ecol Indicators. doi: 10.1016/j.ecolind.2015.10.001
  26. Svendsen H, Beszczynska-Møller A, Hagen JO, Lefauconnier B, Tverberg V, Gerland S, Ørbøk JB, Bischof K, Papucci C, Zajaczkowski M, Azzolini R, Bruland O, Wiencke C, Winther J-G, Dallmann W (2002) The physical environment of Kongsfjorden–Krossfjorden, an Arctic fjord system in Svalbard. Polar Res 21:133–166. doi: 10.1111/j.1751-8369.2002.tb00072.x CrossRefGoogle Scholar
  27. Trusel LD, Powell RD, Cumpston RM, Brigham-Grette J (2010) Modern glacimarine processes and potential future behaviour of Kronebreen and Kongsvegen polythermal tidewater glaciers, Kongsfjorden, Svalbard. Geol Soc Lond Spec Publ 344:89–102. doi: 10.1144/sp344.9 CrossRefGoogle Scholar
  28. Tyrell T, Merico A (2004) Emiliania huxleyi: bloom observations and the conditions that induce them. In: Thierstein HR, Young JR (eds) Coccolithophores—from molecular processes to global impact. Springer, Berlin, pp 75–97Google Scholar
  29. von Quillfeldt CH (2000) Common diatom species in Arctic spring blooms: their distribution and abundance. Bot Mar 43:499–516Google Scholar
  30. Weslawski JM, Legezyńska J (1998) Glaciers caused zooplankton mortality? J Plankton Res 20:1233–1240. doi: 10.1093/plankt/20.7.1233 CrossRefGoogle Scholar
  31. Wlodarska-Kowalczuk M, Górska B, Deja K, Morata N (submitted) Do benthic meio and macrofaunal communities respond to seasonality in pelagial processes in an Arctic fjord (Kongsfjorden, Spitsbergen)? Polar Biology Special issue KongsfjordenGoogle Scholar
  32. Zajączkowski M, Nygård H, Hegseth E, Berge J (2010) Vertical flux of particulate matter in an Arctic fjord: the case of lack of the sea-ice cover in Adventfjorden 2006–2007. Polar Biol 33:223–239. doi: 10.1007/s00300-009-0699-x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Catherine Lalande
    • 1
    Email author
  • Brivaëla Moriceau
    • 2
  • Aude Leynaert
    • 2
  • Nathalie Morata
    • 2
    • 3
  1. 1.Takuvik Joint International Laboratory and Québec-Océan, Département de BiologieUniversité LavalQuébecCanada
  2. 2.Laboratoire des sciences de l’Environnement MARin (LEMAR), UMR 6539CNRS-IRD-UBO-Ifremer, IUEM, Technopôle Brest-IroisePlouzanéFrance
  3. 3.Akvaplan-nivaFram Centre for Climate and the EnvironmentTromsøNorway

Personalised recommendations