Polar Biology

, Volume 39, Issue 12, pp 2263–2272 | Cite as

High spatial variation in terrestrial arthropod species diversity and composition near the Greenland ice cap

  • Rikke Reisner Hansen
  • Oskar Liset Pryds Hansen
  • Joseph James Bowden
  • Signe Normand
  • Christian Bay
  • Jesper Givskov Sørensen
  • Toke Thomas Høye
Original Paper

Abstract

Arthropods form a major part of the terrestrial species diversity in the Arctic, and are particularly sensitive to temporal changes in the abiotic environment. It is assumed that most Arctic arthropods are habitat generalists and that their diversity patterns exhibit low spatial variation. The empirical basis for this assumption, however, is weak. We examine the degree of spatial variation in species diversity and assemblage structure among five habitat types at two sites of similar abiotic conditions and plant species composition in southwest Greenland, using standardized field collection methods for spiders, beetles and butterflies. We employed non-metric multidimensional scaling, species richness estimation, community dissimilarity and indicator species analysis to test for local (within site)- and regional (between site)-scale differences in arthropod communities. To identify specific drivers of local arthropod assemblages, we used a combination of ordination techniques and linear regression. Species richness and the species pool differed between sites, with the latter indicating high species turnover. Local-scale assemblage patterns were related to soil moisture and temperature. We conclude that Arctic arthropod species assemblages vary substantially over short distances due to local soil characteristics, while regional variation in the species pool is likely influenced by geographic barriers, i.e., inland ice sheet, glaciers, mountains and large water bodies. In order to predict future changes to Arctic arthropod diversity, further efforts are needed to disentangle contemporary drivers of diversity at multiple spatial scales.

Keywords

Araneae Biodiversity Climate change Coleoptera Habitat heterogeneity Lepidoptera 

Notes

Acknowledgments

We gratefully acknowledge logistical support from the Arctic Research Centre (ARC), Aarhus University. This work is a contribution to the Arctic Science Partnership (ASP) asp-net.org. We would also like to thank the Natural History Museum, Aarhus for use of laboratory and equipment during the identification process. TTH was supported by a Jens Christian Skou fellowship at the Aarhus Institute of Advanced Studies, and SN was supported by the Villum foundation’s Young Investigator Programme (VKR023456).

Supplementary material

300_2016_1893_MOESM1_ESM.pdf (90 kb)
Online Resource 1 Within-habitat plant species occurrence data for site A and B. Occurrences are marked with an x (PDF 89 kb)
300_2016_1893_MOESM2_ESM.xlsx (30 kb)
Online Resource 2 Raw data containing arthropod species abundances coupled with habitat information, sampling periods and coordinates (XLSX 29 kb)
300_2016_1893_MOESM3_ESM.pdf (152 kb)
Online Resource 3 Means and standard errors of all variables measured along with results of environmental fitting. All variables were regressed against the ordination axes from the non-metric multidimensional scaling from both site A and site B. The results of pairwise t test comparing the variables from site A with variables from site B and showing p values, degrees of freedom and t values. (PDF 152 kb)
300_2016_1893_MOESM4_ESM.pdf (82 kb)
Online Resource 4: Plant species richness (± Standard Error) for Hill number q = 0 between sites. Site A and B are represented by white and black colors, respectively. Significant difference (p < 0.05) between sites is indicated with *. (PDF 82 kb)
300_2016_1893_MOESM5_ESM.pdf (81 kb)
Online Resource 5: Estimated plant species richness for Hill number q = 0 within site. Site A and B are represented by white and black colors, respectively. Significant difference (p < 0.05) between habitats at the two different sites is indicated with * (PDF 81 kb)
300_2016_1893_MOESM6_ESM.pdf (83 kb)
Online Resource 6: Venn diagrams based on percentages of plant species unique to site A (white) and species unique to site B (black). (PDF 83 kb)
300_2016_1893_MOESM7_ESM.pdf (136 kb)
Online Resource 7: Plot of non-metric multidimensional scaling analysis for plants. Site A indicated with white symbols and site B is indicated with black symbols. Each dot is representative of the species composition in that specific plot. (PDF 135 kb)

References

  1. Anderson MJ, Ellingsen KE, McArdle BH (2006) Multivariate dispersion as a measure of beta diversity. Ecol Lett 9:683–693. doi:10.1111/j.1461-0248.2006.00926.x CrossRefPubMedGoogle Scholar
  2. Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Global Ecol Biogeogr 19:134–143. doi:10.1111/j.1466-8238.2009.00490.x CrossRefGoogle Scholar
  3. Baselga A, Orme CDL (2012) betapart: an R package for the study of beta diversity. Methods Ecol Evol 3:808–812. doi:10.1111/j.2041-210X.2012.00224.x CrossRefGoogle Scholar
  4. Böcher J (1988) The coleoptera of Greenland. Meddelelser om Grønland, 26th edn. Bioscience, CopenhagenGoogle Scholar
  5. Böcher J (2015) Coleoptera. In: Böcher J, Kristensen NP, Wilhelmsen L (eds) The Greenland entomofauna. An identification manual of insects, spiders and their allies, vol 44., Fauna Entomologica ScandinavicaBrill, Leiden, pp 259–292Google Scholar
  6. Bonte D, Baert L, Maelfait JP (2002) Spider assemblage structure and stability in a heterogeneous coastal dune system (Belgium). J Arachnol 30:331–343. doi:10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2 CrossRefGoogle Scholar
  7. Bonte D, Vandenbroecke N, Lens L, Maelfait J-P (2003) Low propensity for aerial dispersal in specialist spiders from fragmented landscapes. Proc R Soc B 270:1601–1607. doi:10.2307/3592291 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bowden JJ, Buddle CM (2010) Determinants of ground-dwelling spider assemblages at a regional scale in the Yukon Territory, Canada. Ecoscience 17:287–297. doi:10.2980/17-3-3308 CrossRefGoogle Scholar
  9. Bowden JJ, Høye TT, Buddle CM (2013) Fecundity and sexual size dimorphism of wolf spiders (Araneae: lycosidae) along an elevational gradient in the Arctic. Polar Biol 36:831–836. doi:10.1007/s00300-013-1308-6 CrossRefGoogle Scholar
  10. Bowden JJ, Hansen RR, Olsen K, Høye TT (2015) Habitat-specific effects of climate change on a low-mobility Arctic spider species. Polar Biol 38:559–568. doi:10.1007/s00300-014-1622-7 CrossRefGoogle Scholar
  11. Brind’Amour A, Boisclair D, Dray S, Legendre P (2011) Relationships between species feeding traits and environmental conditions in fish communities: a three-matrix approach. Ecol Appl 21:363–377. doi:10.1890/09-2178.1 CrossRefPubMedGoogle Scholar
  12. Cáceres MD, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90:3566–3574. doi:10.1890/08-1823.1 CrossRefPubMedGoogle Scholar
  13. CAFF (2013) Arctic biodiversity assessment. Status and trends in Arctic biodiversity. Akureyri: Conservation of Arctic Flora and FaunaGoogle Scholar
  14. Chao A, Jost L (2012) Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93:2533–2547. doi:10.1890/11-1952.1 CrossRefPubMedGoogle Scholar
  15. Chao A, Chazdon RL, Colwell RK, Shen TJ (2005) A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol Lett 8:148–159. doi:10.1111/j.1461-0248.2004.00707.x CrossRefGoogle Scholar
  16. Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK, Ellison AM (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr 84:45–67. doi:10.1890/13-0133.1 CrossRefGoogle Scholar
  17. Coulson SJ, Hodkinson ID, Webb NR (2003) Microscale distribution patterns in high Arctic soil microarthropod communities: the influence of plant species within the vegetation mosaic. Ecography 26:801–809. doi:10.2307/3683865 CrossRefGoogle Scholar
  18. Crawley MJ, Harral JE (2001) Scale dependence in plant biodiversity. Science 291:864–868. doi:10.1126/science.291.5505.864 CrossRefPubMedGoogle Scholar
  19. Daniels FJA, de Molenaar JG, Chytry M, Tichy L (2011) Vegetation change in Southeast Greenland? Tasiilaq revisited after 40 years. Appl Veg Sci 14:230–241. doi:10.1111/j.1654-109X.2010.01107.x CrossRefGoogle Scholar
  20. Danks HV (2004) Seasonal adaptations in Arctic insects. Integr Comp Biol 44:85–94. doi:10.1093/icb/44.2.85 CrossRefPubMedGoogle Scholar
  21. Elmendorf SC et al (2012) Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat Clim Change 2:453–457. doi:10.1038/Nclimate1465 CrossRefGoogle Scholar
  22. Gaston KJ (2000) Global patterns in biodiversity. Nature 405:220–227. doi:10.1038/35012228 CrossRefPubMedGoogle Scholar
  23. Halaj J, Ross DW, Moldenke AR (2000) Importance of habitat structure to the arthropod food-web in Douglas-fir canopies. Oikos 90:139–152. doi:10.1034/j.1600-0706.2000.900114.x CrossRefGoogle Scholar
  24. Hodkinson ID (2013) Terrestrial and freshwater invertebrates. In: Meltofte H (ed) Arctic biodiversity assessment. Status and trends in Arctic biodiversity. Conservation of Arctic Flora and Fauna, Akureyri, pp 195–219Google Scholar
  25. Høye TT, Forchhammer MC (2008a) The influence of weather conditions on the activity of high-arctic arthropods inferred from long-term observations. BMC Ecol 8:8. doi:10.1186/1472-6785-8-8 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Høye TT, Forchhammer MC (2008b) Phenology of high-arctic arthropods: effects of climate on spatial, seasonal, and inter-annual variation. Adv Ecol Res 40:299–324. doi:10.1016/S0065-2504(07)00013-X CrossRefGoogle Scholar
  27. Høye TT, Sikes DS (2013) Arctic entomology in the 21st century. Can Entomol 145:125–130. doi:10.4039/Tce.2013.14 CrossRefGoogle Scholar
  28. Høye TT, Eskildsen A, Hansen RR, Bowden JJ, Schmidt NM, Kissling WD (2014) Phenology of high-arctic butterflies and their floral resources: species-specific responses to climate change. Curr Zool 60:243–251CrossRefGoogle Scholar
  29. Hsieh TC, Ma KH, Chao A (2014) iNEXT: an R package for interpolation and extrapolation in measuring species diversity. Unpublished manuscriptGoogle Scholar
  30. Imhoff ML, Sisk TD, Milne A, Morgan G, Orr T (1997) Remotely sensed indicators of habitat heterogeneity: use of synthetic aperture radar in mapping vegetation structure and bird habitat. Remote Sens Environ 60:217–227. doi:10.1016/S0034-4257(96)00116-2 CrossRefGoogle Scholar
  31. Jimenez-Valverde A, Lobo JM (2007) Determinants of local spider (Araneidae and Thomisidae) species richness on a regional scale: climate and altitude vs. habitat structure. Ecol Entomol 32:113–122. doi:10.1111/j.1365-2311.2006.00848.x CrossRefGoogle Scholar
  32. Karlsholt O, Kristensen NP, Simonsen TJ, Matti A (2015) Lepidoptera. In: Böcher J, Kristensen NP, Wilhelmsen L (eds) The Greenland entomofauna. An identification manual of insects, spiders and their allies, vol 44., Fauna Entomologica ScandinavicaBrill, Leiden, pp 324–326Google Scholar
  33. Kostylev VE, Erlandsson J, Ming MY, Williams GA (2005) The relative importance of habitat complexity and surface area in assessing biodiversity: fractal application on rocky shores. Ecol Complex 2:272–286. doi:10.1016/j.ecocom.2005.04.002 CrossRefGoogle Scholar
  34. Le Roux PC, Aalto J, Luoto M (2013) Soil moisture’s underestimated role in climate change impact modelling in low-energy systems. Global Change Biol. doi:10.1111/Gcb.12286 Google Scholar
  35. Legendre P, Legendre L (1998) Numerical ecology. Elsevier, AmsterdamGoogle Scholar
  36. Lennon JJ, Koleff P, Greenwood JJD, Gaston KJ (2001) The geographical structure of British bird distributions: diversity, spatial turnover and scale. J Anim Ecol 70:966–979. doi:10.1046/j.0021-8790.2001.00563.x CrossRefGoogle Scholar
  37. Lindroth CH (1985) The Carabidae (Coleoptera) of Fennoscandia and Denmark, vol 1. Brill, LeidenGoogle Scholar
  38. Lindroth CH (1986) The Carabidae (Coleoptera) of Fennoscandia and Denmark, vol 2. Brill, LeidenGoogle Scholar
  39. Marusik YM (2015) Araneae. In: Böcher J, Kristensen NP, Wilhelmsen L (eds) The Greenland entomofauna. An identification manual of insects, spiders and their allies, vol 44., Fauna Entomologica ScandinavicaBrill, Leiden, pp 666–703Google Scholar
  40. McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82:290–297. doi:10.1890/0012-9658(2001)082[0290:Fmmtcd]2.0.Co;2 CrossRefGoogle Scholar
  41. Muenchow J, Feilhauer H, Brauning A, Rodriguez EF, Bayer F, Rodriguez RA, von Wehrden H (2013) Coupling ordination techniques and GAM to spatially predict vegetation assemblages along a climatic gradient in an ENSO-affected region of extremely high climate variability. J Veg Sci 24:1154–1166. doi:10.1111/Jvs.12038 CrossRefGoogle Scholar
  42. Myers-Smith IH et al (2011) Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ Res Lett. doi:10.1088/1748-9326/6/4/045509 Google Scholar
  43. Oksanen J, Guillaume Blanchet F, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2015) vegan: Community Ecology Package. R package version 2.2-1. http://CRAN.R-project.org/package=vegan
  44. Paquin P, Dupérré N (2003) Guide d’identification des araignées de Québec. Association des entomologistes amateurs du Québec, Varennes, QuébeGoogle Scholar
  45. R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0Google Scholar
  46. Rich ME, Gough L, Boelman NT (2013) Arctic arthropod assemblages in habitats of differing shrub dominance. Ecography 36:994–1003. doi:10.1111/j.1600-0587.2012.00078.x CrossRefGoogle Scholar
  47. Rushton SP, Eyre MD (1992) Grassland spider habitats in North-east England. J Biogeogr 19:99–108. doi:10.2307/2845623 CrossRefGoogle Scholar
  48. Rypstra AL (1986) Web spiders in temperate and tropical forests: relative abundance and environmental correlates. Am Midl Nat 115:42–51. doi:10.2307/2425835 CrossRefGoogle Scholar
  49. Sander J, Wardell-Johnson G (2011) Fine-scale patterns of species and phylogenetic turnover in a global biodiversity hotspot: implications for climate change vulnerability. J Veg Sci 22:766–780. doi:10.1111/j.1654-1103.2011.01293.x CrossRefGoogle Scholar
  50. Schaffers AP, Raemakers IP, Sykora KV, Ter Braak CJF (2008) Arthropod assemblages are best predicted by plant species composition. Ecology 89:782–794. doi:10.1890/07-0361.1 CrossRefPubMedGoogle Scholar
  51. Schmidt NM, Kristensen DK, Michelsen A, Bay C (2012) High Arctic plant community responses to a decade of ambient warming. Biodiversity 13:191–199. doi:10.1080/14888386.2012.712093 CrossRefGoogle Scholar
  52. Sikes DS, Draney ML, Fleshman B (2013) Unexpectedly high among-habitat spider (Araneae) faunal diversity from the Arctic Long-Term Experimental Research (LTER) field station at Toolik Lake, Alaska, United States of America. Can Entomol 145:219–226. doi:10.4039/tce.2013.5 CrossRefGoogle Scholar
  53. Simpson GG (1964) Species density of North American recent mammals. Syst Zool 13:57–73. doi:10.2307/2411825 CrossRefGoogle Scholar
  54. Suvanto S, Le Roux PC, Luoto M (2014) Arctic-alpine vegetation biomass is driven by fine-scale abiotic heterogeneity. Geografiska Annaler Series a-Physical Geography 96:549–560. doi:10.1111/Geoa.12050 Google Scholar
  55. Tews J, Brose U, Grimm V, Tielbörger K, Wichmann MC, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92. doi:10.1046/j.0305-0270.2003.00994.x CrossRefGoogle Scholar
  56. Umbanhowar C et al (2013) Contrasting changes in surface waters and barrens over the past 60 years for a subarctic forest-tundra site in northern Manitoba based on remote sensing imagery. Can J Earth Sci 50:967–977. doi:10.1139/cjes-2012-0162 CrossRefGoogle Scholar
  57. Venn S, Kotze DJ (2014) Benign neglect enhances urban habitat heterogeneity: responses of vegetation and carabid beetles (Coleoptera: carabidae) to the cessation of mowing of park lawns. Eur J Entomol 111:703–714. doi:10.14411/eje.2014.089 Google Scholar
  58. Willis KJ, Whittaker RJ (2002) Ecology—species diversity—scale matters. Science 295:1245–1248. doi:10.1126/science.1067335 CrossRefPubMedGoogle Scholar
  59. Wise DH (1993) Spiders in ecological webs, 16.5th edn. Cambridge University Press, Cambridge. doi:10.1017/CBO9780511623431 CrossRefGoogle Scholar
  60. World Spider Catalog (2016) Natural History Museum Bern. http://wsc.nmbe.ch. Accessed 1 Feb 2014
  61. Zona D et al (2009) Methane fluxes during the initiation of a large-scale water table manipulation experiment in the Alaskan Arctic tundra. Global Biogeochem Cy. doi:10.1029/2009gb003487 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Arctic Research CentreAarhus UniversityAarhus CDenmark
  2. 2.Department of Bioscience, AarhusAarhus UniversityAarhus CDenmark
  3. 3.Department of Bioscience, RoskildeAarhus UniversityRoskildeDenmark
  4. 4.Aarhus Institute of Advanced StudiesAarhus UniversityAarhus CDenmark
  5. 5.Department of Bioscience, KaløAarhus UniversityRøndeDenmark

Personalised recommendations