Skip to main content

Advertisement

Log in

The dominant copepods Senecella siberica and Limnocalanus macrurus in the Ob Estuary: ecology in a high-gradient environment

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Intensive transformation and sedimentation of suspended matter from riverine runoff occur in estuarine frontal zones. The mesozooplankton community plays an important role in these processes. In the Ob Estuary, the dominant copepods Limnocalanus macrurus and Senecella siberica form dense local aggregations, but only scarce data on the ecology of these species in the estuarine environment are available. We aimed at analyzing the main aspects of the ecology of the two species including their grazing impact on phytoplankton. The distribution (net tows), ingestion rates (gut fluorescence analysis), respiration and excretion rates (incubation experiments), diet composition, gonad development and size of the lipid sacs of these copepods in a high-gradient area of the Ob Estuary were studied during a cruise of the R/V Professor Stockman in September 2013. S. siberica predominantly inhabited the freshwater zone; L. macrurus was more abundant in the estuarine frontal zone. In L. macrurus, adult females and males dominated the population, the herbivorous feeding hardly met the metabolic demands, the specific lipid content was high, and the gonads were developed. In S. siberica, the fifth copepodite stage (CV) dominated. The feeding rate considerably exceeded the metabolic requirements, and the lipid content was variable. The gonads were undeveloped. The two species grazed one-fifth of the phytoplankton biomass and more than 100 % of primary production, with S. siberica responsible for the main part of the total grazing impact (up to 90 %). These results are discussed in connection with the hydrophysical parameters and phase of the population’s life cycle. The obtained results contribute to the knowledge about zooplankton ecology and the transformation of suspended matter in an estuarine high-gradient environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Appolonio S, Saros JE (2013) The freshwater copepod Limnocalanus macrurus in the Canadian Arctic Archipelago: numbers, weights and respiration observed in September 1961–July 1962. Arctic 66:37–42

    Google Scholar 

  • Arashkevich EG, Drits AV, Timonin AG (1996) Diapause in the life cycle of Calanoides carinatus (Krøyer) (Copepoda, Calanoida). Hydrobiologia 320:197–208

    Article  Google Scholar 

  • Arashkevich EG, Flint MV, Nikishina AB, Pasternak AF, Timonin AG, Vasilieva JV, Mosharov SA, Soloviev KA (2010) The role of zooplankton in transformation of organic matter in the Ob Estuary, on the shelf and in the deep regions of the Kara Sea. Oceanology 50:780–792

    Article  Google Scholar 

  • Carter JCH, Goudie KA (1986) Diel vertical and horizontal distribution of Limnocalanus macrurus and Senecella calanoides (Copepoda:Calanoida) in lakes of Southern Ontario in relation to planktivorous fish. Can J Fish Aquat Sci 43:2508–2515

    Article  Google Scholar 

  • Cavaletto JF, Vanderploeg HA, Gardner WS (1989) Wax esters in two species of freshwater zooplankton. Limnol Oceanogr 34:785–789

    Article  CAS  Google Scholar 

  • Chislenko LL (1968) Nomograms for determination of weight of aquatic organisms by size and body shape. Nauka, Leningrad (in Russian)

    Google Scholar 

  • Chislenko LL (1972) Species composition and distribution of zooplankton ecological groups in the Yenisei Bay. Issled Fauny Morey 12:228–238 (in Russian)

    Google Scholar 

  • Davies KTA, Ryan A, Taggart CT (2012) Measured and inferred gross energy content in diapausing Calanus spp. in a Scotian shelf basin. J Plankton Res 34:614–625

    Article  Google Scholar 

  • Deubel H, Engel M, Fetzer I, Gagaev S, Hirche H-J, Klages M, Larionov V, Lubin P, Lubina O, Nöthig E-M, Okolodkov Y, Rachor E (2003) The southern Kara Sea ecosystem: phytoplankton, zooplankton and benthos communities influenced by river run-off. In: Stein R, Fahl K, Futterer DK, Galimov EK, Stepanets OV (eds) Siberian river run-off in the Kara Sea. Elsevier, Amsterdam, pp 237–265

    Google Scholar 

  • Drits AV, Arashkevich EG, Nikishina AB, Nikishina AB, Sergeeva VM, Soloviev KA (2015) Feeding of domiminant mesozooplankton species and their grazing impact on autotrophic phytoplankton in Yenisei Estuary in Autumn. Oceanology 55:573–582

    Article  Google Scholar 

  • Fetzer I, Hirche HJ, Kolosova EG (2002) The influence of freshwater discharge on the distribution of zooplankton in the southern Kara Sea. Polar Biol 25:404–415

    Google Scholar 

  • Flint MV (2004) Role of the shelf frontal zones in formation of biological production in the Bering Sea. DSci dissertation, Institute of Oceanology, Moscow

  • Flint MV, Sukhanova IN, Kopylov AI, Poyrkov SG, Whitledge TE (2002) Plankton distribution associated with frontal zones in the vicinity of the Pribilof Islands. Deep Sea Res II 49:6069–6093

    Article  Google Scholar 

  • Flint MV, Semenova TN, Arashkevich EG, Sukhanova IN, Gagarin VI, Kremenetskiy VV, Pivovarov MA, Soloviev KA (2010) Structure of the zooplankton communities in the region of the Ob River’s estuarine frontal zone. Oceanology 50:766–779

    Article  Google Scholar 

  • Frost BW (1972) Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnol Oceanogr 17:805–815

    Article  Google Scholar 

  • Futterer DK, Galimov EM (2003) Siberian river run-off into the Kara Sea: characterization, quantification, variability and environmental significance. In: Stein R, Fahl K, Futterer DK, Galimov EK, Stepanets OV (eds) Siberian river run-off in the Kara Sea. Elsevier, Amsterdam, pp 1–8

    Google Scholar 

  • Hirche HJ, Fetzer I, Graeve M, Kattner G (2003) Limnocalanus macrurus in the Kara Sea (Arctic Ocean): an opportunistic copepod as evident from distribution and lipid patterns. Polar Biol 26:720–726

    Article  Google Scholar 

  • Hirche HJ, Kosobokova KN, Gaye-Haake B, Harms I, Meon B, Nöthig E-M (2006) Structure and function of contemporary food webs on Arctic shelves: a panarctic comparison. The pelagic system of the Kara Sea—communities and components of carbon flow. Prog Oceanogr 71:288–313

    Article  Google Scholar 

  • Holm-Hansen O, Lorenzen CJ, Holmes RW, Strickland JDH (1965) Fluorometric determination of chlorophyll. J Cons Perm Int Explor Mer 30:3–15

    Article  CAS  Google Scholar 

  • Ikeda T, Kanno Y, Ozaki K, Shinada A (2001) Metabolic rates of epipelagic copepods as a function of body mass and temperature. Mar Biol 139:587–596

    Google Scholar 

  • ICES Zooplankton Methodology Manual (2000) Harris R, Wiebe P, Lenz J, Skjoldal HR, Huntley M (eds). Elsevier, Amsterdam

  • Kuklin AA (1980) Feeding of Coregonus muksun in Yenisei. Sbornik nauchnykh trudov GosNIORKX 158:87–90 (in Russian)

    Google Scholar 

  • Lisitzin AP (1995) The marginal filter of the ocean. Okeanologia 34:671–682 (in Russian)

    Google Scholar 

  • Mackas DL, Bohrer RN (1976) Fluorescence analysis of zooplankton gut contents and investigation of diel feeding patterns. J Exp Mar Biol Ecol 25:77–85

    Article  Google Scholar 

  • Mauchline J (1998) The biology of calanoid copepods. Academic Press, London

    Google Scholar 

  • Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol Oceanogr 45:569–579

    Article  CAS  Google Scholar 

  • Miller CB, Morgan CA, Prahl FG, Sparrow MA (1998) Storage lipids of the copepod Calanus finmarchicus from Georges Bank and the Gulf of Maine. Limnol Oceanogr 43:488–497

    Article  CAS  Google Scholar 

  • Nero RW, Sprules WG (1986) Predation by the three glacial opportunists on natural zooplankton communities. Can J Zool 64:57–64

    Article  Google Scholar 

  • Niehoff B, Hirche H-J (1996) Oogenesis and gonad maturation in the copepod Calanus finmarchicus and the prediction of egg production from preserved samples. Polar Biol 16:601–612

    Article  Google Scholar 

  • Pirozhnikov PL (1950) On the feeding of white fish in the estuarine regions. Zool Zhurnal 29:140–146 (in Russian)

    CAS  PubMed  Google Scholar 

  • Pirozhnikov PL (1955) Foraging and foraging relations in fish in the estuarine regions of the Laptev Sea. Voprosy ikhtyologii 3:140–185 (in Russian)

    Google Scholar 

  • Ramcharan CW, Sprules WG, Nero RW (1985) Notes on the tactile feeding behaviour of Mysis relicta Loven (Malacostraca: Mysidacea). Verh Int Ver Theor Angew Limnol 22:3215–3219

    Google Scholar 

  • Roff JC (1973) Oxygen consumption of Limnocalanus macrurus Sars (Copepoda: Calanoida) in relation to environmental conditions. Can J Zool 5:877–885

    Article  Google Scholar 

  • Roff JC, Carter JHC (1972) Life cycle and seasonal abundance of the copepod Limnocalanus macrurus Sars in high arctic lake. Linmol Oceanogr 17:363–370

    Article  Google Scholar 

  • Salonen M, Urcho L, Engstrom-Ost J (2009) Effect of turbidity and zooplankton availability on the condition and prey selection of pike larvae. Boreal Environ Res 14:981–989

    Google Scholar 

  • Solorzano L (1969) Determination of ammonia in natural water by the phenolhypochlorite method. Limnol Oceanogr 14:799–801

    Article  CAS  Google Scholar 

  • Steemann Nielsen E (1952) The use of radioactive carbon (C14) for measuring organic production in the sea. J Cons Perm Int Explor Mer 18:117–140

    Article  Google Scholar 

  • Tande KS, Hopkins CCE (1981) Ecological investigations of the zooplankton community of Balsfjorden, northern Norway: the genital system in Calanus finmarchicus and the role of gonad development in overwintering strategy. Mar Biol 63:159–164

    Article  Google Scholar 

  • Vanderploeg HA, Cavaletto JF, Liebig JR, Gardner WS (1998) Limnocalanus macrurus (Copepoda:Calanoida) retains a marine arctic lipid and life strategy in Lake Michigan. J Plankton Res 20:1581–1597

    Article  CAS  Google Scholar 

  • Viitasalo M, Koski M, Pellikka K, Johansson S (1985) Seasonal and long-term variations in the body size of planktonic copepods in the northern Baltic Sea. Mar Biol 123:241–250

    Article  Google Scholar 

  • Vinogradov ME, Shushkina EA, Lebedeva LP, Gagarin VI (1995) Mesoplankton of the East Kara Sea and the Ob and Yenisei river estuaries. Oceanology 34:646–652

    Google Scholar 

  • Warren GJ (1985) Predaceous feeding habits of Limnocalanus macrurus. J Plankton Res 7:537–552

    Article  Google Scholar 

  • Wong CK (1984) A study of the relationships between the mouthparts and food habits in several species of freshwater calanoid copepods. Can J Zool 62:1588–1595

    Article  Google Scholar 

  • Wong CK, Sprules WG (1986) The swimming behavior of the freshwater calanoid copepods Limnocalanus macrurus Sars, Senecella calanoides Juday and Epishura lacustris Forbes. J Plankton Res 8:77–90

    Article  Google Scholar 

Download references

Acknowledgments

We thank the crew of the RV “Professor Stockman” for help in the field work. The study was supported by RSCF grant #14-16-00681 to MVF (organization and carrying out the expedition to the Kara Sea), RSCF grant #14-05-00095 (proceeding of samples), RFBR grant #13-04-00613 and grant #16-05-00037 to AFP (feeding experiments, analysis of lipid content, gonad development of copepods). We are grateful to Prof. T.E. Whitledge and three anonymous reviewers for valuable comments and improving the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Drits.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drits, A.V., Pasternak, A.F., Nikishina, A.B. et al. The dominant copepods Senecella siberica and Limnocalanus macrurus in the Ob Estuary: ecology in a high-gradient environment. Polar Biol 39, 1527–1538 (2016). https://doi.org/10.1007/s00300-015-1878-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-015-1878-6

Keywords

Navigation