Advertisement

Polar Biology

, Volume 39, Issue 10, pp 1765–1784 | Cite as

Distribution and abundance of euphausiids and pelagic amphipods in Kongsfjorden, Isfjorden and Rijpfjorden (Svalbard) and changes in their relative importance as key prey in a warming marine ecosystem

  • Padmini DalpadadoEmail author
  • Haakon Hop
  • Jon Rønning
  • Vladimir Pavlov
  • Erik Sperfeld
  • Friedrich Buchholz
  • Alina Rey
  • Anette Wold
Original Paper

Abstract

Euphausiid (krill) and amphipod dynamics were studied during 2006–2011 by use of plankton nets in Kongsfjorden (79°N) and adjacent waters, also including limited sampling in Isfjorden (78°N) and Rijpfjorden (80°N). The objectives of the study were to assess how variations in physical characteristics across fjord systems affect the distribution and abundance of euphausiids and amphipods and the potential for these macrozooplankton species to reproduce in these waters. The abundances of euphausiids and amphipods were higher in Kongsfjorden than in Rijpfjorden and Isfjorden, and the highest abundances were observed at the innermost stations of Kongsfjorden, where Thysanoessa inermis and Themisto libellula dominated. The Atlantic species Thysanoessa longicaudata, Meganyctiphanes norvegica and Themisto abyssorum dominated at the outside Kongsfjorden. Inter-annual and seasonal variability in abundances of euphausiids and amphipods were evident. The presence of ripe euphausiids outside Kongsfjorden indicates that they may reproduce in these areas. Mature individuals of T. abyssorum were recorded mainly outside Kongsfjorden, whereas no mature or ripe T. libellula were present in both the inner and outer parts of this fjord. If the warming trend persists, as seen during the last decade, this would favour the Atlantic/boreal euphausiid species, while Arctic species, such as the amphipod T. libellula, may decline. Euphausiids and amphipods are major food of capelin (Mallotus villosus) and polar cod (Boreogadus saida), respectively, in this region, and changes in prey abundance will likely have an impact on the feeding dynamics of these important fish species.

Keywords

Macrozooplankton Thysanoessa Themisto Kongsfjorden Arctic fjord systems Climate effect 

Notes

Acknowledgments

This work was partially funded by the Barents Sea Research Program at the Institute of Marine Research, Bergen, Norway, Trophic interactions in the Barents Sea—steps towards an Integrated Ecosystem Assessment (TIBIA-NRC Project No. 228880), and by MOSJ—Environmental monitoring—Svalbard and Jan Mayen (www.mosj.npolar.no/) and MariClim NRC Project 165112/S30. We thank Karen Gjertsen for help with layout of figures and Signe Johannessen for assistance received in the initial phase of sample analysis. Our thanks are extended to IO PAN Physical Oceanography Department, Polish Academy of Sciences, for giving us access to temperature data from 2003 to 2005. We are very grateful to Michael Greenacre, three anonymous referees for their valuable comments and Patrick Ressler for language improvements.

Supplementary material

300_2015_1874_MOESM1_ESM.pdf (238 kb)
Supplementary material 1 (PDF 237 kb)

References

  1. Auel H, Werner I (2003) Feeding, respiration and life history of the hyperiid amphipod Themisto libellula in the Arctic marginal ice zone of the Greenland Sea. J Exp Mar Biol Ecol 296:183–197CrossRefGoogle Scholar
  2. Auel H, Harjes M, da Rocha R, Stubing D, Hagen W (2002) Lipid biomarkers indicate different ecological niches and trophic relationships of the Arctic hyperiid amphipods Themisto abyssorum and T. libellula. Polar Biol 25:374–383Google Scholar
  3. Barrett RT (2007) Food web interactions in the southwestern Barents Sea: black-legged kittiwakes Rissa tridactyla respond negatively to an increase in herring Clupea harengus. Mar Ecol Prog Ser 349:269–276CrossRefGoogle Scholar
  4. Beszczynska-Möller A, Farbach E, Schauer U, Hansen E (2012) Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010. ICES J Mar Sci 69:852–863CrossRefGoogle Scholar
  5. Blachowiak-Samolyk K, Søreide JE, Kwasniewski S, Sundfjord A, Hop H, Falk-Petersen S, Hegseth EN (2008) Hydrodynamic control of mesozooplankton abundance and biomass in northern Svalbard waters (79–81 N). Deep-Sea Res II 55:2210–2224CrossRefGoogle Scholar
  6. Buchholz F, Boysen-Ennen E (1988) Meganyctiphanes norvegica in the Kattegat: studies on the horizontal distribution in relation to hydrography and zooplankton. Ophelia 29:71–82CrossRefGoogle Scholar
  7. Buchholz C, Buchholz F, Tarling GA (2006) On the timing of moulting processes in reproductively active Northern krill Meganyctiphanes norvegica. Mar Biol 149:1443–1452CrossRefGoogle Scholar
  8. Buchholz F, Buchholz C, Weslawski JM (2010) Ten years after: krill as indicator of changes in the macro-zooplankton communities of two Arctic fjords. Polar Biol 33:101–113CrossRefGoogle Scholar
  9. Buchholz F, Werner T, Buchholz C (2012) First observation of krill spawning in the high Arctic at Kongsfjord, west Spitsbergen. Polar Biol 35:1273–1279CrossRefGoogle Scholar
  10. Cottier F, Tverberg V, Inall M, Svendsen H, Nilsen F, Griffiths C (2005) Water mass modification in an Arctic fjord through cross-shelf exchange: the seasonal hydrography of Kongsfjorden, Svalbard. J Geophys Res 110:C12005. doi: 10.1029/2004JC002757 CrossRefGoogle Scholar
  11. Cottier FR, Nilsen F, Inall ME, Gerland S, Tverberg V, Svendsen H (2007) Wintertime warming of an Arctic shelf in response to large-scale atmospheric circulation. Geophys Res Lett 34:L10607. doi: 10.1029/2007GL029948 CrossRefGoogle Scholar
  12. Cuzin-Roudy J, Buchholz F (1999) Ovarian development and spawning in relation to the moult cycle in Northern krill, Meganyctiphanes norvegica (Crustacea: Euphausiacea), along a climatic gradient. Mar Biol 133:267–281CrossRefGoogle Scholar
  13. Daase M, Eiane K (2007) Mesozooplankton distribution in northern Svalbard waters in relation to hydrography. Polar Biol 30:969–981CrossRefGoogle Scholar
  14. Dale K, Falk-Petersen S, Hop H, Fevolden S-E (2006) Population dynamics and body composition of the Arctic hyperiid amphipod Themisto libellula in Svalbard fjords. Polar Biol 29:1063–1070CrossRefGoogle Scholar
  15. Dalpadado P (2002) Inter-specific variations in distribution, abundance and possible life cycle patterns of Themisto spp. (Amphipoda) in the Barents Sea. Polar Biol 25:656–666Google Scholar
  16. Dalpadado P, Bogstad B (2004) Diet of juvenile cod (age 0–2) in the Barents Sea in relation to food availability and cod growth. Polar Biol 27:140–154CrossRefGoogle Scholar
  17. Dalpadado P, Mowbray F (2013) Comparative analysis of feeding ecology of capelin from two shelf ecosystems, off Newfoundland and in the Barents Sea. Prog Oceanogr 114:97–105CrossRefGoogle Scholar
  18. Dalpadado P, Skjoldal HR (1996) Abundance, maturity and growth of the krill species Thysanoessa inermis and T. longicaudata in the Barents Sea. Mar Ecol Prog Ser 144:175–183CrossRefGoogle Scholar
  19. Dalpadado P, Ellertsen B, Melle W, Skjoldal HR (1998) Summer distribution and biomass estimates of macrozooplankton and micronekton in the Nordic Seas. Sarsia 83:103–116CrossRefGoogle Scholar
  20. Dalpadado P, Ellertsen B, Johannessen S (2008a) Inter-specific variations in distribution, abundance and reproduction strategies of krill and amphipods in the Marginal Ice Zone of the Barents Sea. Deep-Sea Res II 55:2257–2265CrossRefGoogle Scholar
  21. Dalpadado P, Yamaguchi A, Ellertsen B, Johannessen S (2008b) Trophic interactions of macro-zooplankton (krill and amphipods) in the Marginal Ice Zone of the Barents Sea. Deep Sea Res II 55:2266–2274CrossRefGoogle Scholar
  22. Dalpadado P, Ingvaldsen RB, Stige LC, Bogstad B, Knutsen T, Ottersen G, Ellertsen B (2012) Climate effects on Barents Sea ecosystem dynamics. ICES J Mar Sci 69(7):1303–1316CrossRefGoogle Scholar
  23. Dalpadado P, Arrigo KR, Hjøllo SS, Rey F, Ingvaldsen RB, Sperfeld E, van Dijken GL, Stige LC, Olsen A, Ottesen G (2014) Productivity in the Barents Sea: response to recent climate variability. PLoS One 9(5):e95273. doi: 10.1371/journal.pone.0095273 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Dolgov AV, Orlova EL, Johannesen E, Bogstad B, Rudneva GB, Dalpadado P, Mukhina NV (2011) Planktivorous fish. In: Jakobsen T, Ozhigin K (eds) The Barents Sea ecosystem, resources, management. Half a century of Russian Norwegian cooperation, Tapir Academic Press, Trondheim, pp 438–454Google Scholar
  25. Drobysheva SS (1982) Degree of isolation of Thysanoessa inermis (Krøyer) and T. raschii (M. Sars) (Crustacea, Euphausiacea) populations in the southern Barents Sea. Int Coun Explor Seas (L:8) 19:21 pGoogle Scholar
  26. Einarsson H (1945) Euphausiacea 1. Northern Atlantic species. Dana Rep 27 (Carlsberg Foundation), p 195Google Scholar
  27. Erikstad KE (1990) Winter diets of four seabird species in the Barents Sea after a crash in the capelin stock. Polar Biol 10:619–627CrossRefGoogle Scholar
  28. Falk-Petersen S, Leu E, Berge J, Kwasniewski S, Nygård H, Røstad A, Keskinen E, Thormar J, von Quillfeldt C, Wold A, Gulliksen B (2008) Vertical migration in high Arctic waters during autumn 2004. Deep-Sea Res II 55:2275–2284CrossRefGoogle Scholar
  29. Fossheim M, Primicerio R, Johannessen E, Ingvaldsen RB, Aschan MM, Dolgov AV (2015) Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat Clim Change 5:673–677CrossRefGoogle Scholar
  30. Gasparini S, Labat J-P, Mayzaud P, Mosseau L, Guittet A, Wold A, Falk-Petersen S (in review). Spatial distribution of zooplankton in Kongsfjorden and Krossfjorden (Svalbard) based on Optical Plankton Counter. Polar Biol (Kongsfjorden Special Issue)Google Scholar
  31. Gerland S, Renner AHH (2007) Sea-ice mass balance monitoring in an Arctic fjord. Ann Glaciol 46:435–442CrossRefGoogle Scholar
  32. Hegseth EN, Tverberg V (2013) Effect of Atlantic water inflow on timing of the phytoplankton spring bloom in a high Arctic fjord (Kongsfjorden, Svalbard). J Mar Syst 113–114:94–105CrossRefGoogle Scholar
  33. Hodal H, Falk-Petersen S, Hop H, Kristiansen S, Reigstad M (2012) Spring bloom dynamics in Kongsfjorden, Svalbard: nutrients, phytoplankton, protozoans and primary production. Polar Biol 35:191–203CrossRefGoogle Scholar
  34. Hop H, Gjøsæter H (2013) Polar cod (Boreogadus saida) and capelin (Mallotus villosus) as key species in marine food webs of the Arctic and the Barents Sea. Mar Biol Res 9:878–894CrossRefGoogle Scholar
  35. Hop H, Pearson T, Hegseth EN, Kovacs KM, Wiencke C, Kwasniewski S, Eiane K, Mehlum F, Gulliksen B, Wlodarska-Kowalczuk M, Lydersen C, Weslawski JM, Cochrane S, Gabrielsen GW, Leakey RJG, Lønne OJ, Zajaczkowski M, Falk-Petersen S, Kendall M, Wängberg S-Å, Bischof K, Voronkov AY, Kovaltchouk NA, Wiktor J, Poltermann M, di Prisco G, Papucci C, Gerland S (2002) The marine ecosystem of Kongsfjorden, Svalbard. Polar Res 21:167–208CrossRefGoogle Scholar
  36. Hop H, Falk-Petersen S, Svendsen H, Kwasniewski S, Pavlov V, Pavlov O, Søreide JE (2006) Physical and biological characteristics of the pelagic system across Fram Strait to Kongsfjorden. Progr Oceanogr 71:182–231CrossRefGoogle Scholar
  37. Huenerlage K, Buchholz F (2015) Thermal limits of krill species from the high Arctic Kongsfjord (Spitsbergen). Mar Ecol Prog Ser 535:89–98CrossRefGoogle Scholar
  38. Huenerlage K, Graeve M, Buchholz F (2014) Lipid composition and trophic relationships of krill species in a high arctic fjord. Polar Biol. doi: 10.1007/s00300-014-1607-6 Google Scholar
  39. Huenerlage K, Graeve M, Buchholz C, Buchholz F (2015) The other krill: overwintering physiology of adult Thysanoessa inermis (Ephausiacea) from the high-Arctic Kongsfjord. Aquat Biol 23:225–235CrossRefGoogle Scholar
  40. ICES (2014) Report of the Arctic Fisheries Working Group (AFWG), Lisbon, Portugal, 23–29 April. ICES C.M. 2014/ACOM:05, pp 656Google Scholar
  41. Johannesen E, Ingvaldsen RB, Bogstad B, Dalpadado P, Eriksen E, Gjøsæter H, Knutsen T, Skern-Mauritzen M (2012) Changes in Barents Sea ecosystem state, 1970–2009: climate fluctuations, human impact, and trophic interactions. ICES J Mar Sci 69:880–889CrossRefGoogle Scholar
  42. Kane JE (1963) Stages in the early development of Parathemisto gaudichaudii (Guer). (Crustacea Amphipoda: Hyperiidea), the development of secondary sexual characters and of the ovary. Trans R Soc N Z 3:35–45Google Scholar
  43. Koszteyn J, Timofeev S, Weslawski JM, Malinga B (1995) Size structure of Themisto abyssorum (Boeck) and Themisto libellula (Mandt) populations in European Arctic Seas. Polar Biol 15:85–92CrossRefGoogle Scholar
  44. Kraft A, Bauerfeind E, Nöthig E-M (2011) Amphipod abundance in sediment trap samples at the long-term observatory HAUSGARTEN (Fram Strait, ~79°N/4°E). Variability in species community patterns. Mar Biodivers 41:353–364CrossRefGoogle Scholar
  45. Kraft A, Bauerfeind E, Nöthig E-M, Bathmann UV (2012) Size structure and life cycle patterns of dominant pelagic amphipods collected as swimmers in sediment traps in the eastern Fram Strait. J Mar Syst 95:1–15CrossRefGoogle Scholar
  46. Kwasniewski S, Hop H, Falk-Petersen S, Pedersen G (2003) Distribution of Calanus species in Kongsfjorden, a glacial fjord in Svalbard. J Plankton Res 25:1–20CrossRefGoogle Scholar
  47. Kwasniewski S, Gluchowska M, Walkusz W, Karnovsky NJ, Jakubas D, Wojczulanis-Jakubas K, Harding AMA, Goszczko I, Cisek M, Beszczynska-Möller A, Walczowski W, Weslawski JM, Stempniewicz L (2012) Interannual changes in zooplankton on the West Spitsbergen Shelf in relation to hydrography and their consequences for the diet of planktivorous seabirds. ICES J Mar Sci 69:890–901CrossRefGoogle Scholar
  48. Leu E, Søreide JE, Hessen DO, Falk-Petersen S, Berge J (2011) Consequences of changing sea-ice cover for primary and secondary producers in the European Arctic shelf seas: timing, quantity, and quality. Progr Oceanogr 90:18–32CrossRefGoogle Scholar
  49. Lilly GR, Fleming AM (1981) Size relationships in predation by Atlantic cod, Gadus morhua, on capelin, Mallotus villosus, and sand lance, Ammodytes dubius, in the Newfoundland area. NAFO Sci Counc Stud 1:41–45Google Scholar
  50. Lydersen C, Assmy P, Falk-Petersen S, Kohler J, Kovacs KM, Reigstad M, Steen H, Strøm H, Sundfjord A, Varpe Ø, Walczowski W, Weslawski JM, Zajaczkowski M (2014) The importance of tidewater glaciers for marine mammals and seabirds in Svalbard, Norway. J Mar Syst 129:452–471CrossRefGoogle Scholar
  51. Makarov RR, Denys CJ (1980) Stages of sexual maturity of Euphausia superba Dana. Biomass Handb Ser 11:1–11Google Scholar
  52. Nahrgang J, Varpe Ø, Korhunova E, Murzina S, Hallanger IG, Vieweg I, Berge J (2014) Gender specific reproductive strategies of an Arctic key species (Boreogadus saida) and implications of climate change. PLoS One 9(5):e98452CrossRefPubMedPubMedCentralGoogle Scholar
  53. Nilsen F, Cottier FR, Skogseth R, Mattsson S (2008) Fjord-shelf exchanges controlled by ice and brine production: the interannual variation of Atlantic Water in Isfjorden, Svalbard. Cont Shelf Res 28:1838–1853CrossRefGoogle Scholar
  54. Orlova EL, Dalpadado P, Knutsen T, Nesterova VN, Prokopchuk IP (2011) Zooplankton. In: Jakobsen T, Ozhigin VK (eds) The Barents Sea. Ecosystem, resources, management. Half a century of Russian-Norwegian cooperation. Tapir Academic Press, Trondheim, pp 91–120Google Scholar
  55. Orlova EL, Dolgov AV, Renaud PE, Greenacre M, Halsband C, Ivshin VA (2015) Climatic and ecological drivers of euphausiid community structure vary spatially in the Barents Sea: relationships from a long time series (1952–2009). Front Mar Sci. doi: 10.3389/fmars.2014.00074 Google Scholar
  56. Ressler PH, Dalpadado P, Macaulay GJ, Handegard N, Skern-Mauritzen M (2015) Acoustic surveys of euphausiids and models of baleen whale distribution in the Barents Sea. Mar Ecol Prog Ser 527:13–29CrossRefGoogle Scholar
  57. Sandvik H, Erikstad KE, Barrett RT, Yoccoz NG (2005) The effect of climate on adult survival of five species of North Atlantic sea birds. J Anim Ecol 74:817–831CrossRefGoogle Scholar
  58. Schoener TW (1970) Nonsynchronous spatial overlap of lizards in patchy habitat. Ecology 51:408–418CrossRefGoogle Scholar
  59. Sheader M (1981) Development and growth in laboratory-maintained and field populations of Parathemisto gauchichaudi (Hyperiidea: Amphipoda). J Mar Biol Assoc UK 61:769–778CrossRefGoogle Scholar
  60. Skjoldal HR, Dalpadado P, Dommasnes A (2004) Food webs and trophic interactions. In: Skjoldal HR (ed) The Norwegian sea ecosystem. Tapir Academic Press, Trondheim, pp 447–506Google Scholar
  61. Slagstad D, Ellingsen IH, Wassmann P (2011) Evaluating primary and secondary production in an Arctic Ocean void of summer sea ice: an experimental simulation approach. Progr Oceanogr 90(1–4):117–131CrossRefGoogle Scholar
  62. Søreide JE, Falk-Petersen S, Hegseth EN, Hop H, Carroll ML, Hobson KA, Blachowiak-Samolyk K (2008) Seasonal feeding strategies of Calanus in the high-Arctic Svalbard region. Deep-Sea Res II 55:2225–2244CrossRefGoogle Scholar
  63. Svendsen H, Beszczynska-Møller A, Hagen JO, Lefauconnier B, Tverberg V, Gerland S, Ørbæk JB, Bischof K, Papucci C, Zajaczkowski M, Azzolini R, Bruland O, Wiencke C, Winther J-G, Dallmann W (2002) The physical environment of Kongsfjorden–Krossfjorden an Arctic fjord system in Svalbard. Polar Res 21:133–166CrossRefGoogle Scholar
  64. Tarling G, Matthews J, Burrows M, Saborowski R, Buchholz F, Bedo A, Mayzaud P (2000) An optimisation model of the diel vertical migration of “Northern krill” (Meganyctiphanes norvegica) in the Clyde Sea and Kattegat Sea. Can J Fish Aquat Sci 57(Suppl. 3):38–50CrossRefGoogle Scholar
  65. Timofeev SF (1993) Distribution and age composition of euphausiids in waters around the Spitsbergen archipelago. Oceanology 33:89–92Google Scholar
  66. Walczowski W, Piechura J (2011) Influence of the West Spitsbergen Current on the local climate. Int J Climatol 31:1088–1093CrossRefGoogle Scholar
  67. Walczowski W, Piechura J, Goszczko I, Wieczorek P (2012) Changes in Atlantic water properties: an important factor in the European Arctic marine climate. ICES J Mar Sci 69:864–869CrossRefGoogle Scholar
  68. Walkusz W, Kwasniewski S, Falk-Petersen S, Hop H, Tverberg V, Wieczorek P, Weslawski JM (2009) Seasonal and spatial changes in zooplankton composition in the glacially influenced Kongsfjorden, Svalbard. Polar Res 28:254–281CrossRefGoogle Scholar
  69. Welch HE, Bergmann MA, Siferd TD, Martin KA, Curtis MF, Crawford RE, Conover RJ, Hop H (1992) Energy flow through the marine ecosystem of the Lancaster Sound region, Arctic Canada. Arctic 45:343–357CrossRefGoogle Scholar
  70. Weslawski JM, Pedersen G, Falk-Petersen S, Porazinski K (2000) Entrapment of macroplankton in an Arctic fjord basin, Kongsfjorden, Svalbard. Oceanologia 42:57–69Google Scholar
  71. Weydmann A, Søreide JE, Kwasniewski S, Leu E, Falk-Petersen S, Berge J (2013) Ice-related seasonality in zooplankton community composition in a high Arctic fjord. J Plankton Res 35:831–842CrossRefGoogle Scholar
  72. Willis KJ, Cottier FR, Kwasniewski S, Wold A, Falk-Petersen S (2006) The influence of advection on zooplankton community composition in an Arctic fjord (Kongsfjorden, Svalbard). J Mar Syst 61:39–54CrossRefGoogle Scholar
  73. Willis KJ, Cottier FR, Kwasniewski S (2008) Impact of warm water advection on the winter zooplankton community in an Arctic fjord. Polar Biol 31:475–481CrossRefGoogle Scholar
  74. Wold A, Jæger I, Hop H, Gabrielsen GW, Falk-Petersen S (2011) Arctic seabird food chains explored by fatty acid composition and stable isotopes in Kongsfjorden, Svalbard. Polar Biol 34:1147–1155CrossRefGoogle Scholar
  75. Yamada Y, Ikeda T (2004) Some diagnostic characters for the classification of two sympatric hyperiid amphipods, Themisto pacifica and T. japonica, in the western North Pacific. Plankton Biol Ecol 51:52–55Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Padmini Dalpadado
    • 1
    Email author
  • Haakon Hop
    • 2
  • Jon Rønning
    • 1
  • Vladimir Pavlov
    • 2
  • Erik Sperfeld
    • 1
    • 3
  • Friedrich Buchholz
    • 4
  • Alina Rey
    • 1
  • Anette Wold
    • 2
  1. 1.Institute of Marine ResearchBergenNorway
  2. 2.Norwegian Polar InstituteFram CentreTromsøNorway
  3. 3.Department of Experimental LimnologyLeibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB)StechlinGermany
  4. 4.Alfred Wegener Institute, Helmholtz Centre for Polar and Marine ResearchBremerhavenGermany

Personalised recommendations