Polar Biology

, Volume 39, Issue 11, pp 2021–2036 | Cite as

Changes in kelp forest biomass and depth distribution in Kongsfjorden, Svalbard, between 1996–1998 and 2012–2014 reflect Arctic warming

  • Inka BartschEmail author
  • Martin Paar
  • Stein Fredriksen
  • Max Schwanitz
  • Claudia Daniel
  • Haakon Hop
  • Christian Wiencke
Original Paper


Arctic West Spitsbergen in Svalbard is currently experiencing gradual warming due to climate change showing decreased landfast sea-ice and increased sedimentation. In order to document possible changes in 2012–2014, we partially repeated a quantitative diving study from 1996 to 1998 in the kelp forest at Hansneset, Kongsfjorden, along a depth gradient between 0 and 15 m. The seaweed biomass increased between 1996/1998 and 2012/2013 with peak in kelp biomass shifted to shallower depth, from 5 to 2.5 m. The kelp biomass at 2.5 m was 8.2-fold higher in 2012/2013 (14 kg fresh biomass m−2) than in 1996/1998 and mostly due to an increase in the kelp Laminaria digitata. This resulted in a very high density of 2- to 8-year-old kelp (70 ind. m−2) and a high leaf area index of nearly 10 at 2.5 m. The entire zonation seemed to have shifted upwards to shallower depth, since also the lower depth limit of most dominant brown algae was shallower as well as the biomass maximum of several taxa. The cumulated annual photosynthetic active radiation at 15 m depth (42 mol m−2 year−1) determined the current depth limit of kelps. Changes also resulted in an altered seaweed community pattern. The complex pattern of change was probably driven by opposing effects of co-acting environmental drivers, namely lack of ice-scouring, elongation of the open-water period and deterioration of the underwater irradiance climate. The results are interpreted as a consequence of Arctic warming probably reflecting a typical scenario for change along other Arctic shores in near future.


Age structure Biomass In situ irradiation Laminariales Zonation 



This work was performed at the International Arctic Environmental Research and Monitoring Facility in Ny-Ålesund, Spitsbergen, Norway. We are grateful to the AWIPEV station and Kings Bay personnel in Ny-Ålesund for continuous support of our research. Scuba diving, biomass handling and determination of leaf area were only possible with the help of students (Kevin Bartl, Anke Bender, Merle Bollen, Kerstin Hübner, Sina Petrowski, Katrin Schachtl, Kai Schwalfenberg and Florian Sprung) which are gratefully acknowledged. IB thanks M. Greenacre for statistical advice and Dieter Hanelt, University of Hamburg, for help with the calibration of irradiance loggers and J. Bartsch for giving a final touch to the English. SF is thankful to AWI and Svalbard Science Forum for travel grants.

Supplementary material

300_2015_1870_MOESM1_ESM.docx (22 kb)
Supplementary material 1 (DOCX 22 kb)
300_2015_1870_MOESM2_ESM.docx (16 kb)
Supplementary material 2 (DOCX 15 kb)
300_2015_1870_MOESM3_ESM.docx (16 kb)
Supplementary material 3 (DOCX 16 kb)


  1. Airoldi L (2003) The effects of sedimentation on rocky coast assemblages. Oceanogr Mar Biol 41:161–236Google Scholar
  2. Bartsch I, Wiencke C, Laepple T (2012) Global seaweed biogeography under a changing climate: the prospected effects of temperature. In: Wiencke C, Bischof K (eds) Seaweed biology. Novel insights into ecophysiology, ecology and utilization. Springer, Heidelberg, pp 383–406Google Scholar
  3. Beuchel F, Gulliksen B (2008) Temporal patterns of benthic community development in an Arctic fjord (Kongsfjorden, Svalbard): results of a 24-year manipulation study. Polar Biol 31:913–924CrossRefGoogle Scholar
  4. Beuchel F, Gulliksen B, Carroll ML (2006) Long-term patterns of rocky bottom macrobenthic community structure in an Arctic fjord (Kongsfjorden, Svalbard) in relation to climate variability (1980–2003). J Mar Syst 63:35–48CrossRefGoogle Scholar
  5. Blacker RW (1957) Benthic animals as indicators of hydrographic conditions and climatic change in Svalbard waters. Fish Invest Ser 2:1–59Google Scholar
  6. Borum J, Pedersen FD, Krause-Jensen D, Christensen PB, Nielsen K (2002) Biomass, photosynthesis and growth of Laminaria saccharina in a high Arctic fjord, NE Greenland. Mar Biol 141:11–19CrossRefGoogle Scholar
  7. Clark FC, Stark JS, Kohnston EL, Runcie JW, Goldsworth PM, Raymond B, Riddle MJ (2013) Light driven tipping points in polar ecosystems. Glob Change Biol 19:3749–3761. doi: 10.1111/gbc.12337 CrossRefGoogle Scholar
  8. Clark GF, Marzinelli EM, Fogwill CJ, Turney CSM, Johnston EI (2015) Effects of sea-ice cover on marine benthic communities: a natural experiment in Commonwealth Bay, East Antarctica. Polar Biol. doi: 10.1007/s00300-015-1688-x Google Scholar
  9. Clarke A, Harris CM (2003) Polar marine ecosystems: major threats and future change. Environ Conserv 30:1–15CrossRefGoogle Scholar
  10. Conlan KE, Lenihan HS, Kvitek RG, Oliver JS (1998) Ice scour disturbance to benthic communities in the Canadian High Arctic. Mar Ecol Prog Ser 166:1–16CrossRefGoogle Scholar
  11. Cottier FR, Nilsen F, Inall ME, Gerland S, Tverberg V, Svendsen H (2007) Wintertime warming of an Arctic shelf in response to large-scale atmospheric circulation. Geophys Res Lett 34:L10607CrossRefGoogle Scholar
  12. Dalpadado P, Hop H, Rønning J, Pavlov V, Sperfeld E, Buchholz F, Rey A, Wold A (2015) Distribution and abundance of euphausiids and pelagic amphipods in Kongsfjorden, Isfjorden and Rijpfjorden (Svalbard) and changes in their relative importance as key prey in a warming marine ecosystem. Polar Biol. doi: 10.1007/s00300-015-1874-x Google Scholar
  13. De Vernal A, Gersonde R, Goosse H, Seidenkrantz M-S (2013) Sea ice in the paleoclimate system: the challenge of reconstructing sea ice from proxies—an introduction. Quat Sci Rev 79:1–8CrossRefGoogle Scholar
  14. Deregibus D, Quartino ML, Campana G, Momo FR, Wiencke C, Zacher K (2015) Photosynthetic light requirements and vertical distribution of macroalgae in newly ice-free areas in Potter Cove, South Shetland Islands, Antarctica. Polar Biol. doi: 10.1007/s00300-015-1679-y Google Scholar
  15. Derrien-Courtel S, Le Gal A, Grall J (2013) Regional-scale analysis of subtidal rocky shore community. Helgol Mar Res 67:697–712CrossRefGoogle Scholar
  16. Dunton KH (1990) Growth and production in Laminaria solidungula: relation to continuous underwater light levels in the Alaskan high Arctic. Mar Biol 106:297–304CrossRefGoogle Scholar
  17. Fredriksen S, Kile MR (2012) The algal vegetation in the outer part of Isfjorden, Spitsbergen: a revisit of Per Svendsens sites after 50 years. Polar Res. doi: 10.3402/polar.v31i0.17538 Google Scholar
  18. Fredriksen S, Bartsch I, Wiencke C (2014) New additions to the benthic marine flora of Kongsfjorden, western Svalbard, and comparison between 1996/1998 and 2012/2013. Bot Mar 57:203–216CrossRefGoogle Scholar
  19. Fredriksen S, Karsten U, Bartsch I, Woelfel J, Koblowsky M, Schumann R, Moy SR, Steneck RS, Wiktor J, Hop H, Wiencke C (in press) Biodiversity of benthic macro- and microalgae from Svalbard with special focus on Kongsfjorden. Adv Polar Ecol (accepted)Google Scholar
  20. Gehling C (2006) Qualitative und quantitative Analyse des Laminarienwaldes vor Helgoland – ein Vergleich zu 1970. Diploma thesis, University of BremenGoogle Scholar
  21. Gerland S, Renner AHH (2007) Sea-ice mass-balance monitoring in an Arctic fjord. Ann Glaciol 46:435–442CrossRefGoogle Scholar
  22. Gómez I, Wulff A, Roleda MY, Huovinen P, Karsten U, Quartino ML, Dunton K, Wiencke C (2011) Light and temperature demands of marine benthic microalgae and seaweeds in polar regions. In: Wiencke C (ed) Biology of polar benthic algae. De Gruyter, Berlin, pp 195–220Google Scholar
  23. Gontar VI, Hop H, Voronkov AY (2001) Diversity and distribution of Bryozoa in Kongsfjorden, Svalbard. Polar Res 22:187–204Google Scholar
  24. Greenacre M (2010) Correspondence analysis of raw data. Ecol Soc Am 91:958–963Google Scholar
  25. Gutt J (2001) On the direct impact of ice on marine benthic communities, a review. Polar Biol 24:553–564CrossRefGoogle Scholar
  26. Hanelt D, Wiencke C, Karsten U, Nultsch W (1997) Photoinhibition and recovery after high light stress in different developmental and life-history stages of Laminaria saccharina (Phaeophyta). J Phycol 33:387–395CrossRefGoogle Scholar
  27. Hanelt D, Tüg GH, Bischof K, Gross C, Lippert H, Sawall T, Wiencke C (2001) Light regime in an Arctic fjord: a study related to stratospheric ozone depletion as a basis for determination of UV effects on algal growth. Mar Biol 138:649–658CrossRefGoogle Scholar
  28. Hanelt D, Bischof K, Wiencke C (2004) The radiation, temperature and salinity regime in Kongsfjorden. Ber Polarforsch Meeresforsch 492:14–25Google Scholar
  29. Hop H, Wiencke C, Vögele B, Kovaltchouk NA (2012) Species composition, zonation, and biomass of marine benthic macroalgae in Kongsfjorden, Svalbard. Bot Mar 55:399–414CrossRefGoogle Scholar
  30. Hurd CL, Harrison PJ, Bischof K, Lobban CS (2014) Seaweed ecology and physiology, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  31. IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  32. Johannessen OM, Bengtsson L, Miles MW, Kuzmina SI, Semenov VA, Alekseev GV, Nagurnyi AP, Zakharov VF, Bobylev LP, Pettersson LH, Hasselmann K, Cattle HP (2004) Arctic climate change: observed and modelled temperature and sea-ice variability. Tellus 56A:328–341CrossRefGoogle Scholar
  33. Jueterbock A, Tyberghein L, Verbruggen H, Coyer JA, Olsen JL, Hoarau G (2013) Climate change impact on seaweed meadow distribution in the North Atlantic rocky intertidal. Ecol Evol 3:1356–1373CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kain JM (1963) Aspects of the biology of Laminaria hyperborea. II. Age, weight and length. J Mar Biol Assoc UK 43:129–151CrossRefGoogle Scholar
  35. Keats DW, South GR, Steele DH (1985) Algal biomass and diversity in the upper subtidal at a pack-ice disturbed site in eastern Newfoundland. Mar Ecol Prog Ser 25:151–158CrossRefGoogle Scholar
  36. Keck A, Wiktor J, Hapter R, Nilsen R (1999) Phytoplankton assemblages related to physical gradients in an arctic, glacier-fed fjord in summer. ICES J Mar Sci 56(Suppl.):203–214CrossRefGoogle Scholar
  37. Kedra M, Wlodarska-Kowalczuk M, Weslawski JM (2010) Decadal changes in macrobenthic soft-bottom community structure in a high Arctic fjord (Kongsfjorden, Svalbard). Polar Biol 33:1–11CrossRefGoogle Scholar
  38. Klinger T, DeWreede RE (1988) Stipe rings, age, and size in populations of Laminaria setchellii Silva (Laminariales, Phaeophyta) in British Columbia. Phycologia 27:234–240CrossRefGoogle Scholar
  39. Konar B, Iken K, Edwards M (2009) Depth-stratified community zonation patterns on Gulf of Alaska rocky shores. Mar Ecol 30:63–73CrossRefGoogle Scholar
  40. Kortsch S, Primicerio R, Beuchel F, Renaud PE, Rodrigues J, Lønne OL, Gulliksen B (2012) Climate-driven regime shifts in Arctic marine benthos. Proc Natl Acad Sci USA 109:14052–14057CrossRefPubMedPubMedCentralGoogle Scholar
  41. Krause-Jensen D, Duarte CM (2014) Expansion of vegetated coastal ecosystems in the future. Front Mar Sci 1:77CrossRefGoogle Scholar
  42. Krause-Jensen D, Marbà N, Olesen B, Sejr MK, Christensen PB, Rodrigues J, Renaud PE, Balsby TJS, Rysgaard S (2012) Seasonal ice cover as principal driver of spatial and temporal variation in depth extension and annual production of kelp in Greenland. Glob Change Biol 18:2981–2994CrossRefGoogle Scholar
  43. Lantuit H, Overduin P, Couture N, Wetterich S, Aré F, Atkinson D, Brown J, Cherkashov G, Drozdov D, Forbes DL, Graves-Gaylord A, Grogoriev M, Hubberten H-W, Jordan J, Jorgenson T, Ødegaard RS, Ogorodov S, Pollard WH, Rachold V, Sedenko S, Solomon S, Steenhuisen F, Streletskaya I, Vasiliev A (2012) The Arctic coastal dynamics database: a new classification scheme and statistics on Arctic permafrost coastlines. Estuar Coast 35:383–400CrossRefGoogle Scholar
  44. Lüning K (1969) Standing crop and leaf area index of the sublittoral Laminaria species near Helgoland. Int J Life Oceans Coast Waters 3:282–286Google Scholar
  45. Lüning K, Dring M (1979) Continuous underwater light measurements near Helgoland (North Sea) and its significance for characteristic light limits in the sublittoral region. Helgol Mar Res 32:403–424Google Scholar
  46. Lüning K, tom Dieck I (1989) Environmental triggers in algal seasonality. Bot Mar 32:389–397CrossRefGoogle Scholar
  47. Matishov G, Moiseev D, Lyubina O, Zhirchkin A, Dzhenyuk S, Karamushko O, Frovlova E (2012) Climate and cyclic hydrobiological changes of the Barents Sea from the twentieth to twenty-first centuries. Polar Biol 35:1773–1790CrossRefGoogle Scholar
  48. Müller R, Laepple T, Bartsch I, Wiencke C (2009) Impact of oceanic warming on the distribution of seaweeds in polar and cold-temperate waters. Bot Mar 52:617–638CrossRefGoogle Scholar
  49. Nenadic O, Greenacre M (2007) Correspondence analysis in R, with two- and three-dimensional graphics: the ca package. J Stat Softw 20:1–13Google Scholar
  50. Nordli Ø, Przybylak R, Ogilvie AEJ, Isaksen K (2014) Long-term temperature trends and variability on Spitsbergen: the extended Svalbard Airport temperature series, 1898–2012. Polar Res 33:21349. doi: 10.3402/polar.v33.21349 CrossRefGoogle Scholar
  51. Novaczek I (1981) Stipe growth rings in Ecklonia radiata (C. Ag.) J. Ag. (Laminariales). Br Phycol J 16:363–371CrossRefGoogle Scholar
  52. Nowak A, Hodson A (2013) Hydrological response of a High-Arctic catchment to changing climate over the past 35 years: a case study of Bayelva watershed, Svalbard. Polar Res 32:19691. doi: 10.3402/polar.v32i0.19691 CrossRefGoogle Scholar
  53. Nuth C, Kohler J, König M, von Deschwanden A, Hagen JO, Kääb A, Moholdt G, Petterson R (2013) Decadal changes from a multi-temporal glacier inventory of Svalbard. Cryosphere 7:1603–1621CrossRefGoogle Scholar
  54. Overland JE, Wood KR, Wang M (2011) Warm Arctic, cold continents: climate impacts of the newly open Arctic Sea. Polar Res 30:15787. doi: 10.3402/polar.v30i0.15787 CrossRefGoogle Scholar
  55. Paar M, Voronkov A, Hop H, Brey T, Bartsch I, Schwanitz M, Wiencke C, Lebreton B, Asmus R, Asmus H (2015) Temporal shift in biomass and production of macrozoobenthos in the macroalgal belt at Hansneset, Kongsfjorden, after 15 years. Polar Biol. doi: 10.1007/s00300-015-1760-6 Google Scholar
  56. Parke M (1948) Studies on British Laminariaceae. 1. Growth in Laminaria saccharina (L.) Lamour. J Mar Biol Assoc UK 27:651–709CrossRefGoogle Scholar
  57. Pedersen M, Snoeijs P (2001) Patterns of macroalgal diversity, community composition and long-term changes along the Swedish west coast. Hydrobiologia 459:83–102CrossRefGoogle Scholar
  58. Pedersen MF, Nejrup LB, Fredriksen S, Christie H, Norderhaug KM (2012) Effects of wave exposure on population structure, demography, biomass and productivity of the kelp Laminaria hyperborea. Mar Ecol Prog Ser 451:45–60CrossRefGoogle Scholar
  59. Pehlke C, Bartsch I (2008) Changes in depth distribution and biomass of sublittoral seaweeds at Helgoland (North Sea) between 1970 and 2005. Clim Res 37:135–147CrossRefGoogle Scholar
  60. Peterson BJ, Holmes RM, McClelland JW, Vörösmarty CJ, Lammers RB, Shiklomanov AI, Shiklomanov IA, Rahmstorf S (2002) Increased river discharge to the Arctic ocean. Science 298:2171–2173CrossRefPubMedGoogle Scholar
  61. Piechura J, Walczowski W (2009) Warming of the West Spitsbergen current and sea ice north of Svalbard. Oceanologia 51:147–164CrossRefGoogle Scholar
  62. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  63. Rodrigues J (2009) The increase in the length of the ice-free season in the Arctic. Cold Reg Sci Technol 59:78–101CrossRefGoogle Scholar
  64. Saloranta TM, Haugan PM (2001) Interannual variability in the hydrography of Atlantic water northwest of Svalbard. J Geophys Res 106(C7):13931–13943CrossRefGoogle Scholar
  65. Spielhagen RF, Werner K, Sørensen SA, Zamelczyk K, Kandiano E, Budeus G, Husum K, Marchitto TM, Hald M (2011) Enhanced modern heat transport to the Arctic by warm Atlantic water. Science 331:450–453CrossRefPubMedGoogle Scholar
  66. Spurkland T, Iken K (2012) Seasonal growth patterns of Saccharina latissima (Phaeophyceae, Ochrophyta) in a glacially-influenced subarctic estuary. Phycol Res 60:261–275CrossRefGoogle Scholar
  67. Svendsen P (1959) The algal vegetation of Spitsbergen. A survey of the marine algal flora of the outer part of Isfjorden. Norsk Polarinst Skr 116:1–49Google Scholar
  68. Svendsen H, Beszczynska-Møller A, Hagen JO, Lefauconnier B, Tverberg V, Gerland S, Ørbæk JB, Bischof K, Papucci C, Zajaczkowski M, Azzolini R, Bruland O, Wiencke C, Winther J-G, Dallmann W (2002) The physical environment of Kongsfjorden–Krossfjorden, an Arctic fjord system in Svalbard. Polar Res 21:133–166CrossRefGoogle Scholar
  69. Svensson JR, Lindegarth M, Pavia H (2010) Physical and biological disturbances interact differently with productivity: effects on floral and faunal richness. Ecology 91:3069–3080CrossRefPubMedGoogle Scholar
  70. tom Dieck I (1991) Circannual growth rhythm and photoperiodic sorus induction in the kelp Laminaria setchellii (Phaeophyta). J Phycol 27:341–350CrossRefGoogle Scholar
  71. Voronkov AY, Stepanjants SD, Hop H (2010) Hydrozoan diversity on hard bottom in Kongsfjorden, Svalbard. J Mar Biol Assoc UK 90:69–84CrossRefGoogle Scholar
  72. Voronkov A, Hop H, Gulliksen B (2013) Diversity of hard-bottom fauna relative to environmental gradients in Kongsfjorden, Svalbard. Polar Res. doi: 10.30402/polar.v32i0.11208 Google Scholar
  73. Walczowski W, Piechura J, Goszczko I, Wieczorek P (2012) Changes in Atlantic water properties: an important factor in the European Arctic marine climate. ICES J Mar Sci 69:864–869CrossRefGoogle Scholar
  74. Wassmann P, Duarte CM, Agustí S, Sejr MK (2011) Footprints of climate change in the Arctic marine ecosystem. Glob Change Biol 17:1235–1249CrossRefGoogle Scholar
  75. Weslawski JM, Wiktor J Jr, Kotwicki L (2010) Increase in biodiversity in the arctic rocky littoral, Sorkappland, Svalbard, after 20 years of climate warming. Mar Biodiv 40:123–130CrossRefGoogle Scholar
  76. Weslawski JM, Kendall MA, Wlodarska-Kowalczuk M, Iken K, Kedra M, Legezynska J, Sejr MK (2011) Climate change effects on Arctic fjord and coastal macrobenthic diversity—observations and predictions. Mar Biodiv 41:71–85CrossRefGoogle Scholar
  77. Wiencke C (1990) Seasonality of brown macroalgae from Antarctica—a long-term culture study under fluctuating Antarctic daylengths. Polar Biol 10:589–600CrossRefGoogle Scholar
  78. Wiktor J (1999) Early spring microplankton development under fast ice covered fjords of Svalbard, Arctic. Oceanologia 41:51–72Google Scholar
  79. Wlodarska-Kowalczuk M (2007) Molluscs in Kongsfjorden (Spitsbergen, Svalbard): a species list and patterns of distribution and diversity. Polar Res 26:48–63CrossRefGoogle Scholar
  80. Zacher K, Bernard M, Bartsch I, Wiencke C (in review) Survival of early life history stages of Arctic kelps (Kongsfjorden. Svalbard) under multifactorial global change scenarios. Polar BiolGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Inka Bartsch
    • 1
    Email author
  • Martin Paar
    • 2
  • Stein Fredriksen
    • 3
  • Max Schwanitz
    • 1
  • Claudia Daniel
    • 1
  • Haakon Hop
    • 4
  • Christian Wiencke
    • 1
  1. 1.Alfred-Wegener-Institute Helmholtz-Center for Polar and Marine ResearchBremerhavenGermany
  2. 2.Alfred-Wegener-Institute Helmholtz-Center for Polar and Marine ResearchList/SyltGermany
  3. 3.Department of BiosciencesUniversity of OsloOsloNorway
  4. 4.Norwegian Polar InstituteFram CentreTromsøNorway

Personalised recommendations