Skip to main content

Thermal biology and immersion tolerance of the Beringian pseudoscorpion Wyochernes asiaticus

Abstract

Wyochernes asiaticus (Arachnida: Pseudoscorpiones: Chernetidae) is a pseudoscorpion distributed across Beringia, the areas of Yukon, Alaska and Siberia that remained unglaciated at the last glacial maximum. Along with low temperatures, its streamside habitat suggests that submergence during flood events is an important physiological challenge for this species. We collected W. asiaticus in midsummer from 66.8°N Yukon Territory, Canada, and measured thermal and immersion tolerance. Wyochernes asiaticus is freeze-avoidant, with a mean supercooling point of −6.9 °C. It remains active at low temperatures (mean critical thermal minimum, CTmin, is −3.6 °C) and has a critical thermal maximum (CTmax) of 37.8 °C, which is lower than other arachnids and consistent with its restriction to high latitudes. Fifty per cent of W. asiaticus individuals survived immersion in oxygen-depleted water for 17 days, suggesting that this species has high tolerance to immersion during flooding events. To our knowledge, these are the first data on the environmental physiology of any pseudoscorpion and a new addition to our understanding of the biology of polar microarthropods.

This is a preview of subscription content, access via your institution.

References

  • Addo-Bediako A, Chown SL, Gaston KJ (2000) Thermal tolerance, climatic variability and latitude. Proc R Soc Lond B 267:739–745

    CAS  Article  Google Scholar 

  • Aitchison CW (1979) Low temperature activity of pseudoscorpions and phalangids in southern Manitoba. J Arachnol 7:85–86

    Google Scholar 

  • Bale JS, Hodkinson ID, Block W, Webb NR, Coulson SC, Strathdee AT (1997) Life strategies of Arctic terrestrial arthropods. In: Woodin SJ, Marquiss M (eds). British ecological society special publication no. 13. Blackwell, Oxford. pp 137–165

  • Barnes BM, Barger JL, Seares J, Tacquard PC, Zuercher GL (1996) Overwintering in Yellowjacket queens (Vespula vulgaris) and green stinkbugs (Elasmostethus interstinctus) in subarctic Alaska. Physiol Zool 69:1469–1480

    Article  Google Scholar 

  • Block W (1994) Terrestrial Ecosystems: antarctica. Polar Biol 14:293–300

    Article  Google Scholar 

  • Buddle CM (2015) Life history and distribution of the Arctic pseudoscorpion, Wyochernes asiaticus (Chernetidae). Can Field Nat 129:134–138

    Google Scholar 

  • Burmester T (2004) Evolutionary history and diversity of arthropod hemocyanins. Micron 35:121–122

    CAS  Article  PubMed  Google Scholar 

  • Cannon RJC, Block W (1988) Cold tolerance of microarthropods. Biol Rev 63:23–77

    Article  Google Scholar 

  • Convey P (2011) Antarctic terrestrial biodiversity in a changing world. Polar Biol 34:1629–1641

    Article  Google Scholar 

  • Convey P, Stevens MI (2007) Antarctic biodiversity. Science 317:1877–1878

    CAS  Article  PubMed  Google Scholar 

  • Coulson SJ, Hodkinson ID, Block W, Webb NR, Worland MR (1995) Low summer temperatures: a potential mortality factor for high arctic soil microarthropods? J Insect Physiol 41:783–792

    CAS  Article  Google Scholar 

  • Coulson SJ, Leinaas HP, Ims RA, Søvik G (2000) Experimental manipulation of the winter surface ice layer: the effects on a High Arctic soil microarthropod community. Ecography 23:299–306

    Article  Google Scholar 

  • Coulson SJ, Hodkinson ID, Webb NR, Harrison JA (2002) Survival of terrestrial soil-dwelling arthropods on and in seawater: implications for trans-oceanic dispersal. Funct Ecol 16:353–356

    Article  Google Scholar 

  • Everatt MJ, Bale JS, Convey P, Worland MR, Hayward SAL (2013) The effect of acclimation temperature on thermal activity thresholds in polar terrestrial invertebrates. J Insect Physiol 59:1057–1064

    CAS  Article  PubMed  Google Scholar 

  • Hawes TC, Worland MR, Bale JS, Convey P (2008) Rafting in Antarctic Collembola. J Zool 274:44–50

    Google Scholar 

  • Hertzberg K, Leinaas HP (1998) Drought stress as a mortality factor in two pairs of sympatric species of Collembola at Spitsbergen, Svalbard. Polar Biol 19:302–306

    Article  Google Scholar 

  • Hodkinson ID, Coulson SJ (2004) Are high Arctic terrestrial food chains really that simple? The Bear Island food web revisited. Oikos 106:427–431

    Article  Google Scholar 

  • Hodkinson ID, Coulson SJ, Webb NR, Block W (1996) Can high Arctic soil microarthropods survive elevated summer temperatures? Funct Ecol 10:314–321

    Article  Google Scholar 

  • Hodkinson ID, Webb NR, Bale JS, Block W, Coulson SJ, Strathdee AT (1998) Global change and Arctic ecosystems: conclusions and predictions from experiments with terrestrial invertebrates on Spitsbergen. Arct Alp Res 30:306–313

    Article  Google Scholar 

  • Holmstrup M, Sømme L (1998) Dehydration and cold hardiness in the Arctic collembolan Onychiurus arcticus Tullberg 1876. J Comp Physiol B 168:197–203

    Article  Google Scholar 

  • Holmstrup M, Bayley M, Ramløv H (2002) Supercool or dehydrate? An experimental analysis of overwintering strategies in small permeable Arctic invertebrates. Proc Natl Acad Sci USA 99:5716–5720

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Koponen S (1994) Ground-living spiders, opilionids, and pseudoscorpions of peatlands in Quebec. Mem Entomol Soc Can 126 (S169):41–60

    Article  Google Scholar 

  • Koponen S, Sharkey MJ (1988) Northern records of Microbisium brunneum (Pseudoscorpionida, Neobisiidae) form Eastren Canada. J Arachnol 16:388–390

    Google Scholar 

  • Lee RE (2010) A primer on insect cold tolerance. In: Denlinger DL, Lee RE (eds) Low temperature biology of insects. Cambridge University Press, Cambridge, pp 3–34

    Chapter  Google Scholar 

  • Lopez-Martinez G, Benoit JB, Rinehart JP, Elnitsky MA, Lee RE, Denlinger DL (2009) Dehydration, rehydration, and overhydration alter patterns of gene expression in the Antarctic midge, Belgica antarctica. J Comp Physiol B 179:481–491

    CAS  Article  PubMed  Google Scholar 

  • Muchmore WB (1990) A pseudoscorpion from Arctic Canada (Pseudoscorpionida, Chernetidae). Can J Zool 68:389–390

    Article  Google Scholar 

  • Seymour RS, Matthews PGD (2013) Physical gills in diving insects and spiders: theory and experiment. J Exp Biol 216:164–170

    CAS  Article  PubMed  Google Scholar 

  • Sinclair BJ, Klok CJ, Scott MB, Terblanche JS, Chown SL (2003) Diurnal variation in supercooling points of three species of Collembola from Cape Hallett, Antarctica. J Insect Physiol 49:1049–1061

    CAS  Article  PubMed  Google Scholar 

  • Sinclair BJ, Terblanche JS, Scott MB, Blatch G, Klok CJ, Chown SL (2006) Environmental physiology of three species of Collembola at Cape Hallett, North Victoria Land, Antarctica. J Insect Physiol 52:29–50

    CAS  Article  PubMed  Google Scholar 

  • Sinclair BJ, Coello Alvarado LE, Ferguson LV (2015) An invitation to measure insect cold tolerance: methods, approaches, and workflow. J Therm Biol 53:180–197

    Article  PubMed  Google Scholar 

  • Slabber S, Worland MR, Leinaas HP, Chown SL (2007) Acclimation effects on thermal tolerances of springtails from sub-Antarctic Marion Island: indigenous and invasive species. J Insect Physiol 53:113–125

    CAS  Article  PubMed  Google Scholar 

  • Sømme L (1981) Cold tolerance of Alpine, Arctic and Antarctic Collembola and Mites. Cryobiology 18:212–220

    Article  PubMed  Google Scholar 

  • Sømme L (1995) Invertebrates in hot and cold arid environments. Springer, Berlin

    Book  Google Scholar 

  • Sømme L, Conradi-Larsen E-M (1977) Anaerobiosis in overwintering collembolans and oribatid mites from windswept mountain ridges. Oikos 29:127–132

    Article  Google Scholar 

  • Tamburri MN, Wasson K, Matsuda M (2002) Ballast water deoxygenation can prevent aquatic introductions while reducing ship corrosion. Biol Conserv 103:331–341

    Article  Google Scholar 

  • Tanaka K (1994) The effect of feeding and gut contents on supercooling in the house spider, Achaearana tepidariorum (Araneae: Theridiidae). Cryo Lett 15:361–366

    Google Scholar 

  • Tanaka K, Watanabe M (1996) Influence of prey species on the supercooling ability of the Redback Spider, Latrodectus hasseltii (Araneae: Theridiidae). Acta Arachnol 45:147–150

    Article  Google Scholar 

  • van der Woude HA (1987) Seasonal changes in cold hardiness of temperate Collembola. Oikos 50:231–238

    Article  Google Scholar 

  • Vanin S, Turchetto M (2007) Winter activity of spiders and pseudoscorpions in the South-Eastern Alps (Italy). Ital J Zool 74:31–38

    Article  Google Scholar 

  • Worland MR, Grubor-Lajsic G, Montiel PO (1998) Partial desiccation induced by sub-zero temperatures as a component of the survival strategy of the Arctic collembolan Onychiurus arcticus (Tullberg). J Insect Physiol 44:211–219

    CAS  Article  PubMed  Google Scholar 

  • Worland MR, Convey P, Lukešová A (2000) Rapid cold hardening: a gut feeling. Cryo Lett 21:315–324

    Google Scholar 

  • Zeh JA, Bonilla MM, Su EJ, Padua MV, Anderson RV, Kaur D, D-s Yang, Zeh DW (2012) Degrees of disruption: projected temperature increase has catastrophic consequences for reproduction in a tropical ectotherm. Global Change Biol 18:1833–1842

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to Mhairi McFarlane, Shaun Turney and Anne-Sophie Caron for assistance in the field. Chris, Beatrix and April Howard provided logistical support. Two anonymous referees provided comments that improved the manuscript. This research was supported by the Natural Sciences and Engineering Research Council of Canada via Discovery Grants to BJS and CMB and a Northern Supplement to CMB, and by a Northern Scientific Training Programme grant to SEA. Collections were made under Yukon Science and Exploration Permit 15-10S&E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brent J. Sinclair.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anthony, S.E., Buddle, C.M. & Sinclair, B.J. Thermal biology and immersion tolerance of the Beringian pseudoscorpion Wyochernes asiaticus . Polar Biol 39, 1351–1355 (2016). https://doi.org/10.1007/s00300-015-1849-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-015-1849-y

Keywords

  • Pseudoscorpion
  • Microarthropod
  • Cold tolerance
  • Critical thermal limits
  • Immersion