Advertisement

Polar Biology

, Volume 39, Issue 7, pp 1351–1355 | Cite as

Thermal biology and immersion tolerance of the Beringian pseudoscorpion Wyochernes asiaticus

  • Susan E. Anthony
  • Christopher M. Buddle
  • Brent J. Sinclair
Short Note

Abstract

Wyochernes asiaticus (Arachnida: Pseudoscorpiones: Chernetidae) is a pseudoscorpion distributed across Beringia, the areas of Yukon, Alaska and Siberia that remained unglaciated at the last glacial maximum. Along with low temperatures, its streamside habitat suggests that submergence during flood events is an important physiological challenge for this species. We collected W. asiaticus in midsummer from 66.8°N Yukon Territory, Canada, and measured thermal and immersion tolerance. Wyochernes asiaticus is freeze-avoidant, with a mean supercooling point of −6.9 °C. It remains active at low temperatures (mean critical thermal minimum, CTmin, is −3.6 °C) and has a critical thermal maximum (CTmax) of 37.8 °C, which is lower than other arachnids and consistent with its restriction to high latitudes. Fifty per cent of W. asiaticus individuals survived immersion in oxygen-depleted water for 17 days, suggesting that this species has high tolerance to immersion during flooding events. To our knowledge, these are the first data on the environmental physiology of any pseudoscorpion and a new addition to our understanding of the biology of polar microarthropods.

Keywords

Pseudoscorpion Microarthropod Cold tolerance Critical thermal limits Immersion 

Notes

Acknowledgments

Thanks to Mhairi McFarlane, Shaun Turney and Anne-Sophie Caron for assistance in the field. Chris, Beatrix and April Howard provided logistical support. Two anonymous referees provided comments that improved the manuscript. This research was supported by the Natural Sciences and Engineering Research Council of Canada via Discovery Grants to BJS and CMB and a Northern Supplement to CMB, and by a Northern Scientific Training Programme grant to SEA. Collections were made under Yukon Science and Exploration Permit 15-10S&E.

References

  1. Addo-Bediako A, Chown SL, Gaston KJ (2000) Thermal tolerance, climatic variability and latitude. Proc R Soc Lond B 267:739–745CrossRefGoogle Scholar
  2. Aitchison CW (1979) Low temperature activity of pseudoscorpions and phalangids in southern Manitoba. J Arachnol 7:85–86Google Scholar
  3. Bale JS, Hodkinson ID, Block W, Webb NR, Coulson SC, Strathdee AT (1997) Life strategies of Arctic terrestrial arthropods. In: Woodin SJ, Marquiss M (eds). British ecological society special publication no. 13. Blackwell, Oxford. pp 137–165Google Scholar
  4. Barnes BM, Barger JL, Seares J, Tacquard PC, Zuercher GL (1996) Overwintering in Yellowjacket queens (Vespula vulgaris) and green stinkbugs (Elasmostethus interstinctus) in subarctic Alaska. Physiol Zool 69:1469–1480CrossRefGoogle Scholar
  5. Block W (1994) Terrestrial Ecosystems: antarctica. Polar Biol 14:293–300CrossRefGoogle Scholar
  6. Buddle CM (2015) Life history and distribution of the Arctic pseudoscorpion, Wyochernes asiaticus (Chernetidae). Can Field Nat 129:134–138Google Scholar
  7. Burmester T (2004) Evolutionary history and diversity of arthropod hemocyanins. Micron 35:121–122CrossRefPubMedGoogle Scholar
  8. Cannon RJC, Block W (1988) Cold tolerance of microarthropods. Biol Rev 63:23–77CrossRefGoogle Scholar
  9. Convey P (2011) Antarctic terrestrial biodiversity in a changing world. Polar Biol 34:1629–1641CrossRefGoogle Scholar
  10. Convey P, Stevens MI (2007) Antarctic biodiversity. Science 317:1877–1878CrossRefPubMedGoogle Scholar
  11. Coulson SJ, Hodkinson ID, Block W, Webb NR, Worland MR (1995) Low summer temperatures: a potential mortality factor for high arctic soil microarthropods? J Insect Physiol 41:783–792CrossRefGoogle Scholar
  12. Coulson SJ, Leinaas HP, Ims RA, Søvik G (2000) Experimental manipulation of the winter surface ice layer: the effects on a High Arctic soil microarthropod community. Ecography 23:299–306CrossRefGoogle Scholar
  13. Coulson SJ, Hodkinson ID, Webb NR, Harrison JA (2002) Survival of terrestrial soil-dwelling arthropods on and in seawater: implications for trans-oceanic dispersal. Funct Ecol 16:353–356CrossRefGoogle Scholar
  14. Everatt MJ, Bale JS, Convey P, Worland MR, Hayward SAL (2013) The effect of acclimation temperature on thermal activity thresholds in polar terrestrial invertebrates. J Insect Physiol 59:1057–1064CrossRefPubMedGoogle Scholar
  15. Hawes TC, Worland MR, Bale JS, Convey P (2008) Rafting in Antarctic Collembola. J Zool 274:44–50Google Scholar
  16. Hertzberg K, Leinaas HP (1998) Drought stress as a mortality factor in two pairs of sympatric species of Collembola at Spitsbergen, Svalbard. Polar Biol 19:302–306CrossRefGoogle Scholar
  17. Hodkinson ID, Coulson SJ (2004) Are high Arctic terrestrial food chains really that simple? The Bear Island food web revisited. Oikos 106:427–431CrossRefGoogle Scholar
  18. Hodkinson ID, Coulson SJ, Webb NR, Block W (1996) Can high Arctic soil microarthropods survive elevated summer temperatures? Funct Ecol 10:314–321CrossRefGoogle Scholar
  19. Hodkinson ID, Webb NR, Bale JS, Block W, Coulson SJ, Strathdee AT (1998) Global change and Arctic ecosystems: conclusions and predictions from experiments with terrestrial invertebrates on Spitsbergen. Arct Alp Res 30:306–313CrossRefGoogle Scholar
  20. Holmstrup M, Sømme L (1998) Dehydration and cold hardiness in the Arctic collembolan Onychiurus arcticus Tullberg 1876. J Comp Physiol B 168:197–203CrossRefGoogle Scholar
  21. Holmstrup M, Bayley M, Ramløv H (2002) Supercool or dehydrate? An experimental analysis of overwintering strategies in small permeable Arctic invertebrates. Proc Natl Acad Sci USA 99:5716–5720CrossRefPubMedPubMedCentralGoogle Scholar
  22. Koponen S (1994) Ground-living spiders, opilionids, and pseudoscorpions of peatlands in Quebec. Mem Entomol Soc Can 126 (S169):41–60CrossRefGoogle Scholar
  23. Koponen S, Sharkey MJ (1988) Northern records of Microbisium brunneum (Pseudoscorpionida, Neobisiidae) form Eastren Canada. J Arachnol 16:388–390Google Scholar
  24. Lee RE (2010) A primer on insect cold tolerance. In: Denlinger DL, Lee RE (eds) Low temperature biology of insects. Cambridge University Press, Cambridge, pp 3–34CrossRefGoogle Scholar
  25. Lopez-Martinez G, Benoit JB, Rinehart JP, Elnitsky MA, Lee RE, Denlinger DL (2009) Dehydration, rehydration, and overhydration alter patterns of gene expression in the Antarctic midge, Belgica antarctica. J Comp Physiol B 179:481–491CrossRefPubMedGoogle Scholar
  26. Muchmore WB (1990) A pseudoscorpion from Arctic Canada (Pseudoscorpionida, Chernetidae). Can J Zool 68:389–390CrossRefGoogle Scholar
  27. Seymour RS, Matthews PGD (2013) Physical gills in diving insects and spiders: theory and experiment. J Exp Biol 216:164–170CrossRefPubMedGoogle Scholar
  28. Sinclair BJ, Klok CJ, Scott MB, Terblanche JS, Chown SL (2003) Diurnal variation in supercooling points of three species of Collembola from Cape Hallett, Antarctica. J Insect Physiol 49:1049–1061CrossRefPubMedGoogle Scholar
  29. Sinclair BJ, Terblanche JS, Scott MB, Blatch G, Klok CJ, Chown SL (2006) Environmental physiology of three species of Collembola at Cape Hallett, North Victoria Land, Antarctica. J Insect Physiol 52:29–50CrossRefPubMedGoogle Scholar
  30. Sinclair BJ, Coello Alvarado LE, Ferguson LV (2015) An invitation to measure insect cold tolerance: methods, approaches, and workflow. J Therm Biol 53:180–197CrossRefPubMedGoogle Scholar
  31. Slabber S, Worland MR, Leinaas HP, Chown SL (2007) Acclimation effects on thermal tolerances of springtails from sub-Antarctic Marion Island: indigenous and invasive species. J Insect Physiol 53:113–125CrossRefPubMedGoogle Scholar
  32. Sømme L (1981) Cold tolerance of Alpine, Arctic and Antarctic Collembola and Mites. Cryobiology 18:212–220CrossRefPubMedGoogle Scholar
  33. Sømme L (1995) Invertebrates in hot and cold arid environments. Springer, BerlinCrossRefGoogle Scholar
  34. Sømme L, Conradi-Larsen E-M (1977) Anaerobiosis in overwintering collembolans and oribatid mites from windswept mountain ridges. Oikos 29:127–132CrossRefGoogle Scholar
  35. Tamburri MN, Wasson K, Matsuda M (2002) Ballast water deoxygenation can prevent aquatic introductions while reducing ship corrosion. Biol Conserv 103:331–341CrossRefGoogle Scholar
  36. Tanaka K (1994) The effect of feeding and gut contents on supercooling in the house spider, Achaearana tepidariorum (Araneae: Theridiidae). Cryo Lett 15:361–366Google Scholar
  37. Tanaka K, Watanabe M (1996) Influence of prey species on the supercooling ability of the Redback Spider, Latrodectus hasseltii (Araneae: Theridiidae). Acta Arachnol 45:147–150CrossRefGoogle Scholar
  38. van der Woude HA (1987) Seasonal changes in cold hardiness of temperate Collembola. Oikos 50:231–238CrossRefGoogle Scholar
  39. Vanin S, Turchetto M (2007) Winter activity of spiders and pseudoscorpions in the South-Eastern Alps (Italy). Ital J Zool 74:31–38CrossRefGoogle Scholar
  40. Worland MR, Grubor-Lajsic G, Montiel PO (1998) Partial desiccation induced by sub-zero temperatures as a component of the survival strategy of the Arctic collembolan Onychiurus arcticus (Tullberg). J Insect Physiol 44:211–219CrossRefPubMedGoogle Scholar
  41. Worland MR, Convey P, Lukešová A (2000) Rapid cold hardening: a gut feeling. Cryo Lett 21:315–324Google Scholar
  42. Zeh JA, Bonilla MM, Su EJ, Padua MV, Anderson RV, Kaur D, D-s Yang, Zeh DW (2012) Degrees of disruption: projected temperature increase has catastrophic consequences for reproduction in a tropical ectotherm. Global Change Biol 18:1833–1842CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Susan E. Anthony
    • 1
  • Christopher M. Buddle
    • 2
  • Brent J. Sinclair
    • 1
  1. 1.Department of BiologyUniversity of Western OntarioLondonCanada
  2. 2.Department of Natural Resource SciencesMcGill UniversitySte-Anne-de-BellevueCanada

Personalised recommendations