Skip to main content

Impact of diurnal freeze–thaw cycles on the soil nematode Scottnema lindsayae in Taylor Valley, Antarctica


Global climate change scenarios predict not only higher temperatures, but also increased climatic variability. In cold regions, these changes may bring about a shift in the frequency of soil freeze–thaw cycles (FTCs), which represent a significant physiological challenge, especially for small, poikilothermic animals with limited mobility. To assess the impact of FTCs on cold-adapted soil biota, we evaluated freeze–thaw dynamics (i.e., 0 °C crossings) and demographics of the dominant nematode Scottnema lindsayae (proportion of adults, population size) over 20 years in soils at two locations in Taylor Valley, Antarctica. Based on hourly soil temperature data, we demonstrate that FTCs are a frequent feature in Taylor Valley, but with high inter-annual and spatial variability. Valley topography and soil moisture were found to impact FTC frequency, suggesting that basins within Taylor Valley have different susceptibilities to environmental variability. Increased FTC frequency in 1999–2001 coincided with a shift in S. lindsayae populations, with fewer juveniles reaching maturity. In the years following decreased adult proportions, overall S. lindsayae numbers were reduced, implying a strong negative effect of FTCs on in situ recruitment. Our results suggest that increased FTC frequency in the Dry Valleys slows S. lindsayae development, reducing reproductive success, and may take years to impact population size, which demonstrates the importance of long-term research to accurately predict the consequences of climate change on soil biota and biogeochemical cycling in the cold regions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


Download references


This research was funded by McMurdo LTER NSF OPP Grant 1115245 to DHW, RAV, and BJA. The lab and fieldwork for this project was carried out with the indispensible help of numerous postdocs and students associated with the MCM LTER. We gratefully acknowledge the assistance of the Crary Laboratory staff, Raytheon Polar Services, and PHI Helicopters Inc. for supporting the logistical aspects of this project.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Matthew A. Knox.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Knox, M.A., Wall, D.H., Virginia, R.A. et al. Impact of diurnal freeze–thaw cycles on the soil nematode Scottnema lindsayae in Taylor Valley, Antarctica. Polar Biol 39, 583–592 (2016).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Dry Valleys
  • Nematodes
  • Anhydrobiosis
  • Climate change
  • Extreme environment
  • Demographics
  • Soil fauna
  • Long-term research