Skip to main content
Log in

The life cycle of Catablema vesicarium (A. Agassiz, 1862) (Hydrozoa, Pandeidae)

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The hydrozoan classification systems often rely on limited character sets of either polyp or medusa stages, and these classifications stay non-consistent in many cases because of lack of life cycle data. This is usual for hydrozoans with tiny inconspicuous colonies and intermittent medusae production period such as pandeid in the polar latitudes. In this study, the previously unknown life cycle of boreal-Arctic pandeid hydrozoan Catablema vesicarium was elucidated under experimental conditions. Medusae C. vesicarium were found near the Pertsov Biological Station in the White Sea and maintained in a laboratory till spawning. Morphological descriptions of development stages including medusae, eggs, planulae, polyps, and medusae buds are represented. Hydroid C. vesicarium was also collected on the shell with live Astarte elliptica. Identification of this colony was confirmed by comparing the sequences of the mitochondrial CO1, 16S, and nuclear 18S-ITS1-5.8S gene fragments of medusae and polyps. Hydroids C. vesicarium have almost sessile polyps with perisarc cup only at the base, and newborn medusae have rudimentary marginal bulbs which alternate with four marginal tentacles. Identification characters of the cultivated hydrozoan are discussed in comparison with other known pandeids. The data on temperature range of medusae appearing in experiments may be potentially useful for studying seasonality of jellyfish in the sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agassiz A (1865) North American Acalephae. Illustrated catalogue of the museum of comparative zoölogy at Harvard College. Sever and Francis, Cambridge

    Google Scholar 

  • Arai MN, Brinkmann-Voss A (1980) Hydromedusae of British Columbia and Puget Sound. Can B Fish Aquat Sci 204:1–192

    Google Scholar 

  • Boero F, Bouillon J (1989) The life cycles of Octotiara russelli and Stomotoca atra (Cnidaria, Anthomedusae, Pandeidae). Zool Scr. 18:1–7. doi:10.1111/j.1463-6409.1989.tb00118.x

    Article  Google Scholar 

  • Boero F, Bouillon J, Gravili C (1991) The life cycle of Hydrichthys mirus (Cnidaria: Hydrozoa: Anthomedusae: Pandeidae). Zool J Linn Soc Lond 101:189–199. doi:10.1111/j.1096-3642.1991.tb00893.x

    Article  Google Scholar 

  • Borstad GA, Brinckmann-Voss A (1979) On Pelagiana trichodesmiae n. gen., n. sp., family Pandeidae, (Anthomedusae/Athecatae, Cnidaria), a new hydrozoan associated with the planktonic cyanophyte Trichodesmium thiebautii. Can J Zool 57:1232–1237. doi:10.1139/z79-158

    Article  Google Scholar 

  • Bouillon J (1985) Notes additionelles sur les Hydroméduses de la mer de Bismarck (Hydrozoa-Cnidaria). Indo Malayan Zool 2:245–266

    Google Scholar 

  • Bouillon J, Boero F (2000) Synopsis of the families and genera of the Hydromedusae of the world, with a list of the worldwide species. Thalass Sal 24:47–296

    Google Scholar 

  • Brinckmann A (1962) The life cycle of Merga galleri sp. n. (Anthomedusae, Pandeidae). Pubbl Staz Zool Napoli 33:1–9

    Google Scholar 

  • Cunningham CW, Buss LW (1993) Molecular evidence for multiple episodes of paedomorphosis in the family Hydractiniidae. Biochem Syst Ecol 21:57–69. doi:10.1016/0305-1978(93)90009-G

    Article  CAS  Google Scholar 

  • Damas H (1934) Hydrichthys cyclothonis (nov. sp.), hydroïde parasite du poisson Cyclothone signata (Garman). Bull Mus R Hist Nat Belg 10:1–10

    Google Scholar 

  • Edwards C (1965) The hydroid and the medusa Neoturris pileata. J Mar Biol Assoc UK 45:443–468

    Article  CAS  Google Scholar 

  • Fewkes JW (1887) A hydroid parasitic on a fish. Nature 36:604–605. doi:10.1038/036604b0

    Article  Google Scholar 

  • Fewkes JW (1888) On certain medusae from New England. Bull Mus Comp Zool 13:209–240

    Google Scholar 

  • Haeckel E (1879) Das System der Medusen. Erster Teil einer Monographie der Medusen. Denkschriften der Medicinisch-Naturwissenschaftlichen Gesellschaft zu Jena 1:1–360

    Google Scholar 

  • Hartlaub C (1895) Die Polypen und Quallen von Stauridium productum Wright und Perigonimus repens Wright. Z wiss Zool ABT A 61:142–162

    Google Scholar 

  • Hartlaub C (1914) Craspedote Medusen. Teil 1, Lief. 3, Tiaridae. Nordisches Plankton 6:237–363

    Google Scholar 

  • Kramp PL (1961) Synopsis of the medusae of the world. J Mar Biol Assoc UK 40:1–469

    Google Scholar 

  • Larson RJ (1982) Life history of the hydromedusa Stomotoca pterophylla Haeckel and its ichtyoparasitic hydroid. Smithson Contrib Mar Sci 12:433–439

    Google Scholar 

  • Naumov DV (1960) Hydroids and Hydromedusae of the marine, brackish and freshwater basins of the USSR. Opredeliteli po faune SSSR 70:1–585 (in Russian)

    Google Scholar 

  • Nutting CC (1901) The hydroids of the woods hole region. Govt. print. off, Washington

    Book  Google Scholar 

  • Pertsova NM (1979) Some data on hydromedusae ecology in the White Sea. Kompleksnye Issledovaniya Prirody Okeana 6:231–242 (in Russian)

    Google Scholar 

  • Picard J (1956) Le premier stade de l’hydromeduse Pandea conica, issu du l’hydropolype Campaniclava cleodorae. Bull Inst Océanogr (Monaco) 1086:1–11

    Google Scholar 

  • Piraino S, De Vito D, Bouillon J, Boero F (2003) Larval necrophilia: the odd life cycle of a pandeid hydrozoan in the Weddell Sea shelf. Polar Biol 26:178–185

    Google Scholar 

  • Rees WJ (1938) Observations on British and Norwegian hydroids and their medusae. J Mar Biol Assoc UK 23:1–42

    Article  Google Scholar 

  • Rees WJ (1956) A Revision of the Hydroid Genus Perigonimus M. Sars, 1846. Bull br Mus nat Hist Zool 3:337–350

    Google Scholar 

  • Rees JT (2000) A pandeid hydrozoan, Amphinema sp., new and probably introduced to central California: life history, morphology, distribution, and systematics. Sci Mar. 64:165–172. doi:10.3989/scimar.2000.64s1165

    Article  Google Scholar 

  • Rees WJ, Russell FS (1937) On rearing the hydroids of certain medusae, with an account of the methods used. J Mar Biol Assoc UK 22:61–82

    Article  Google Scholar 

  • Schuchert P (1996) The marine fauna of New Zealand: athecate hydroids and their medusae (Cnidaria: Hydrozoa). NZOI Mem 106:1–159

    Google Scholar 

  • Schuchert P (2007) The European athecate hydroids and their medusae (Hydrozoa, Cnidaria): filifera part 2. Rev Suisse Zool 114:195–396

    Article  Google Scholar 

  • Slobodov SA, Marfenin NN (2005) The features of reproduction of Obelia spp. in the White Sea. Oceanol USSR 45:69–75

    Google Scholar 

  • Stepanjants S, Svoboda A (2013) Which Halitholus species (Cnidaria: Hydrozoa) inhabits the Arctic and high boreal Atlantic waters? Mar Ecol Evol Persp 34:197–203. doi:10.1111/maec.12036

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vannucci M, Yamada M (1959) The life cycle of Merga tergestina (Anthomedusae, Pandeidae). Pubbl Staz Zool Napoli 31:320–333

    Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  • Widmer CL (2007) The hydroid and medusa of Amphinema rollinsi (Cnidaria: Hydrozoa), a new species of pandeid from the Monterey Bay Submarine Canyon, USA. Zootaxa 1595:53–59

    Google Scholar 

  • Zelickman EA (1972) Distribution and ecology of the pelagic hydromedusae, siphonophores and ctenophores of the Barents Sea, based on perennial plankton collections. Mar Biol 17:256–264. doi:10.1007/BF00366301

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the anonymous reviewers for their critical evaluation of the manuscript. We are sincerely grateful to Olga Grum-Grzhimaylo, G. Kolbasova, and T. Scherbakova for assistance with cultivation of hydroid colonies, students of invertebrate department of Moscow State University for assistance with medusae collection, Arctic Circle Dive Centre for collection of hydroids in March 2014. We are thankful to G. Kolbasova for cooperation advices and improvement of manuscript. Maria Cleveland kindly improved the language of the manuscript. This work was partially supported by the grant of the Council of President of Russian Federation (NSH-1801.2014.4), Russian Foundation for Basic Research (16-04-01176, 16-04-00229). The sequencing is supported by the Russian Science Foundation (project 14-50-00150).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey A. Prudkovsky.

Ethics declarations

Conflicts of interest

The authors have no potential conflicts of interest.

Ethical standards

The experiments comply with the current laws of the Russian Federation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prudkovsky, A.A., Neretina, T.V. The life cycle of Catablema vesicarium (A. Agassiz, 1862) (Hydrozoa, Pandeidae). Polar Biol 39, 533–542 (2016). https://doi.org/10.1007/s00300-015-1805-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-015-1805-x

Keywords

Navigation