Advertisement

Polar Biology

, Volume 39, Issue 10, pp 1897–1912 | Cite as

Near-bottom zooplankton aggregations in Kongsfjorden: implications for pelago–benthic coupling

  • H.-J. HircheEmail author
  • J. Laudien
  • F. Buchholz
Original Paper

Abstract

Near-bottom zooplankton communities have rarely been studied despite numerous reports of high zooplankton concentrations, probably due to methodological constraints. In Kongsfjorden, Svalbard, the near-bottom layer was studied for the first time by combining daytime deployments of a remotely operated vehicle (ROV), the optical zooplankton sensor moored on-sight key species investigation (MOKI), and Tucker trawl sampling. ROV data from the fjord entrance and the inner fjord showed high near-bottom abundances of euphausiids with a mean concentration of 17.3 ± 3.5 n × 100 m−3. With the MOKI system, we observed varying numbers of euphausiids, amphipods, chaetognaths, and copepods on the seafloor at six stations. Light-induced zooplankton swarms reached densities in the order of 90,000 (euphausiids), 120,000 (amphipods), and 470,000 ind m−3 (chaetognaths), whereas older copepodids of Calanus hyperboreus and C. glacialis did not respond to light. They were abundant at the seafloor and 5 and 15 m above and showed maximum abundance of 65,000 ind m−3. Tucker trawl data provided an overview of the seasonal vertical distribution of euphausiids. The most abundant species Thysanoessa inermis reached near-bottom concentrations of 270 ind m−3. Regional distribution was neither related to depth nor to location in the fjord. The taxa observed were all part of the pelagic community. Our observations suggest the presence of near-bottom macrozooplankton also in other regions and challenge the current view of bentho–pelagic coupling. Neglecting this community may cause severe underestimates of the stock of pelagic zooplankton, especially predatory species, which link secondary production with higher trophic levels.

Keywords

Kongsfjord Near-bottom macrozooplankton Hyperbenthic krill Chaetognatha Amphipoda Copepoda Arctic fjord MOKI system ROV 

Notes

Acknowledgments

Many thanks are expressed for support during the fieldwork by the captains of the research boat Teisten Arne-Kristoffer Olstad and Halgeir Reitan (Kings Bay AS, Norway) and the ROV pilots Dominique Fleury, Alain Pottier, and Nicolas Leviavant (IPEV, France). Kim Hünerlage assisted with sampling and identification of krill species. We are indebted to Maike Thomsen and Lars Grübner, who transferred the video material to a digital format, and Kristina Bär and Lars Grübner for cutting video strings (see Laudien 2014). We are also grateful to Rainer Sieger, who archived the data in the database PANGAEA of the World Data Centre for Marine Environmental Sciences (WDC-MARE). The comments of anonymous reviewers helped to improve the manuscript. This work was performed at the International Arctic Environmental Research and Monitoring Facility at Ny-Ålesund, Spitsbergen, Norway.

References

  1. Alldredge AL, Robinson BH, Fleminger A, Torres JJ, King JM, Hamner WM (1984) Direct sampling and in situ observation of a persistent copepod aggregation in the mesopelagic zone of the Santa Barbara Basin. Mar Biol 80:75–81CrossRefGoogle Scholar
  2. Auel H, Werner I (2003) Feeding, respiration and life history of the hyperiid amphipod Themisto libellula in the arctic marginal ice zone of the Greenland Sea. J Exp Mar Biol Ecol 296:183–197CrossRefGoogle Scholar
  3. Basedow SL, Eiane K, Tverberg V (2004) Advection of zooplankton in an Arctic fjord (Kongsfjorden, Svalbard). Estuar Coast Shelf Sci 60:113–124. doi: 10.1016/j.ecss.2003.12.004 CrossRefGoogle Scholar
  4. Brandt A (1997) Abundance, diversity and community patterns of epibenthic- and benthic-boundary layer peracarid crustaceans at 75°N off East Greenland. Polar Biol 17:159–174CrossRefGoogle Scholar
  5. Buchholz F, Buchholz C, Węsławski JM (2010) Ten years after: krill as indicator of changes in the macro-zooplankton communities of two Arctic fjords. Polar Biol 33:101–113CrossRefGoogle Scholar
  6. Choe N, Deibel D (2000) Seasonal vertical distribution and population dynamics of the chaetognath Parasagitta elegans in the water column and hyperbenthic zone of Conception Bay, Newfoundland. Mar Biol 137:847–856CrossRefGoogle Scholar
  7. Clarke A, Tyler PA (2008) Adult Antarctic krill feeding at abyssal depths. Curr Biol 18:282–285CrossRefPubMedGoogle Scholar
  8. Cochrane NA, Sameoto DD, Herman AW, Neilson J (1991) Multiple-frequency acoustic backscattering and zooplankton aggregations in the inner Scotian Shelf basins. Can J Fish Aquat Sci 48:340–355CrossRefGoogle Scholar
  9. Conway DVP, Williams R (1986) Seasonal population structure, vertical distribution and migration of the chaetognath Sagitta elegans in the Celtic Sea. Mar Biol 93:377–387CrossRefGoogle Scholar
  10. Cottier FR, Tverberg V, Inall ME, Svendsen H, Nilsen F, Griffiths C (2005) Water mass modification in an Arctic fjord through cross-shelf exchange: the seasonal hydrography of Kongsfjord, Svalbard. J Geophys Res Lett 110(C12):12005CrossRefGoogle Scholar
  11. Daase M, Falk-Petersen S, Varpe Ø, Darnis G, Søreide JE, Wold A, Leu E, Berge J, Philippe B, Fortier L (2013) Timing of reproductive events in the marine copepod Calanus glacialis: a pan-Arctic perspective. Can J Fish Aquat Sci 70:871–884CrossRefGoogle Scholar
  12. Dalpadado P, Yamaguchi A, Ellertsen B, Johannessen S (2008) Trophic interactions of macrozooplankton (krill and amphipods) in the Marginal Ice Zone of the Barents Sea. Deep Sea Res II 55:2266–2274CrossRefGoogle Scholar
  13. Dauvin J-C, Vallet C (2006) The near bottom layer as an ecological boundary in marine ecosystems: diversity, taxonomic composition and community definitions. Hyrobiology 555:49–58CrossRefGoogle Scholar
  14. Eiane K, Daase M (2002) Observations of mass mortality of Themisto libellula (Amphipoda, Hyperiidae). Polar Biol 25:396–398Google Scholar
  15. Falk-Petersen S, Hagen W, Kattner G, Clarke A, Sargent J (2000) Lipids, trophic relationships, and biodiversity in Arctic and Antarctic krill. Can J Fish Aquat Sci 57:178–191CrossRefGoogle Scholar
  16. Greene CH, Wiebe PH, Burczynski J, Youngbluth M (1988) Acoustical detection of high-density demersal krill layers in the submarine canyons off Georges Bank. Science 241:359–361CrossRefPubMedGoogle Scholar
  17. Grigor JJ, Søreide JE, Varpe Ø (2014) Seasonal ecology and life history strategy of the high latitude predatory zooplankter Parasagitta elegans. Mar Ecol Prog Ser 499:77–88CrossRefGoogle Scholar
  18. Gutt J, Siegel V (1994) Benthopelagic aggregations of krill (Euphausia superba) on the deeper shelf of the Weddell Sea (Antarctic). Deep Sea Res I 41:169–178CrossRefGoogle Scholar
  19. Hegseth EN, Tverberg V (2013) Effect of Atlantic water inflow on timing of the phytoplankton spring bloom in a high Arctic fjord (Kongsfjorden, Svalbard). J Mar Syst 113–114:94–105CrossRefGoogle Scholar
  20. Herman A, Cochrane NA, Sameoto DD (1993) Detection and abundance estimation of euphausiids using an optical plankton counter. Mar Ecol Prog Ser 94:165–173CrossRefGoogle Scholar
  21. Hewitt RP, Demer DA (2000) The use of acoustic sampling to estimate the dispersion and abundance of euphausiids, with an emphasis on Antarctic krill, Euphausia superba. Fish Res 47:215–229CrossRefGoogle Scholar
  22. Hirai J, Jones DOB (2012) The temporal and spatial distribution of krill (Meganyctiphanes norvegica) at the deep seabed of the Faroe-Shetland Channel, UK: a potential mechanism for rapid carbon flux to deep sea communities. Mar Biol Res 8:48–60CrossRefGoogle Scholar
  23. Hirche H-J (2004) Zooplankton habitats of the Greenland Sea—an experimental laboratory for studies of pelagic ecology. In: Skreslet S (ed) Jan Mayen Island in scientific focus. NATO science series: IV: earth and environmental sciences, vol 45, Kluwer Academic Publishers, Dordrecht, pp 123–133Google Scholar
  24. Hirche H-J, Niehoff B (1996) Reproduction of the Arctic copepod Calanus hyperboreus in the Greenland Sea—field and laboratory observations. Polar Biol 16:209–219CrossRefGoogle Scholar
  25. Hirche HJ, Muyakshin S, Klages M, Auel H (2006) Aggregation of the Arctic copepod Calanus hyperboreus over the sea floor of the Greenland Sea Basin. Deep Sea Res I 53:310–320CrossRefGoogle Scholar
  26. Hirche HJ, Barz K, Ayon P, Schulz J (2014a) High resolution vertical distribution of the copepod Calanus chilensis in relation to the shallow oxygen minimum zone off northern Peru using LOKI, a new plankton imaging system. Deep Sea Res I 88:63–73CrossRefGoogle Scholar
  27. Hirche H-J, Laudien J, Buchholz F (2014b) Near-bottom zooplankton aggregations in Kongsfjorden with link to images from the optical zooplankton sensor. MOKI. doi: 10.1594/PANGAEA.840353 Google Scholar
  28. Hop H, Pearson T, Hegseth EN, Kovacs KM, Wiencke C, Kwaśniewski S, Eiane K, Mehlum F, Gulliksen B, Włodarska-Kowalczuk M, Lydersen C, Węsławski JM, Cochrane S, Gabrielsen GW, Leakey RJG, Lønne OJ, Zajaczkowski M, Falk-Petersen S, Kendall M, Wängberg S-A, Bischof K, Voronkov AY, Kovaltchouk NA, Wiktor J, Poltermann M, di Prisco G, Papucci C, Gerland S (2002) The marine ecosystem of Kongsfjorden, Svalbard. Polar Res 21(1):167–208CrossRefGoogle Scholar
  29. Hopkins CCE, Tande KS, Grønvik S (1984) Ecological investigations on the zooplankton community in Balsfjorden, Northern Norway: an analysis of growth and overwintering tactics in relation to niche and environment in Metridia longa (Lubbock), Calanus finmarchicus (Gunnerus), Thyanoessa inermis (Krøyer), and T. raschi (M. Sars). J Exp Mar Biol Ecol 82:77–99CrossRefGoogle Scholar
  30. Huenerlage K, Buchholz F (2015) The other krill: overwintering physiology of adult Thysanoessa inermis (Euphausiacea) from the high Arctic Kongsfjord. Aquat Sci 23:225–235Google Scholar
  31. Jakobsen T (1971) On the biology of Sagitta elegans Verrill and Sagitta setosa J. Müller in inner Oslofjord. Nor J Zool 19:201–225Google Scholar
  32. King KR (1979) The life history and vertical distribution of the chaetognath, Sagitta elegans, in Dabob Bay, Washington. J Plankton Res 1:153–167CrossRefGoogle Scholar
  33. Koszteyn J, Timofeev S, Węsławski JM, Malinga B (1995) Size structure of Themisto abyssorum Boeck and Themisto libellula (Mandt) populations in European Arctic seas. Polar Biol 15:85–92CrossRefGoogle Scholar
  34. Koulouri P, Dounas C, Radin F, Eleftheriou A (2009) Near-bottom zooplankton in the continental shelf and upper slope of Heraklion Bay (Crete, Greece, Eastern Mediterranean): observations on vertical distribution patterns. J Plankton Res 31:753–762CrossRefGoogle Scholar
  35. Kwaśniewski S, Hop H, Falk-Petersen S, Pedersen G (2003) Distribution of Calanus species in Kongsfjorden, a glacial fjord in Svalbard. J Plankton Res 25:1–20CrossRefGoogle Scholar
  36. Laudien J (2014) Sea-bottom video in QuickTime format at ROV station Kongsfjordneset in 2009. doi: 10.1594/PANGAEA.834613
  37. Laudien J, Fleury D (2015) Sea-bottom video in QuickTime format at a ROV station close to Blomstrand Halvøya in 2014. doi: 10.1594/PANGAEA.848674
  38. Laudien J, Orchard J-B (2012) The significance of depth and substratum incline for the structure of a hard bottom sublittoral community in glacial Kongsfjorden (Svalbard, Arctic)—an underwater imagery approach. Polar Biol 35:1057–1072. doi: 10.1007/s00300-011-1153-4 CrossRefGoogle Scholar
  39. Longhurst AR (1976) Vertical migration. In: Cushing DH, Walsh JJ (eds) The ecology of the seas. Blackwell Scientific, Oxford, pp 116–173Google Scholar
  40. Lønne OJ, Gulliksen B (1991) Source, density and composition of sympagic fauna in the Barents Sea. Polar Res 10:289–294CrossRefGoogle Scholar
  41. Lydersen C, Assmy C, Falk-Petersen S, Kohler J, Kovacs KM, Reigstad M, Steen H, Strøm H, Sundfjord A, Varpe Ø, Walczowski W, Węsławski JM, Zajaczkowsk M (2014) The importance of tidewater glaciers for marine mammals and seabirds in Svalbard, Norway. J Mar Syst 129:452–471CrossRefGoogle Scholar
  42. McCave IN (1986) Local and global aspects of the bottom nepheloid layers in the world ocean. Neth J Sea Res 20:167–181. doi: 10.1016/0077-7579(86)90040-2 CrossRefGoogle Scholar
  43. Nicol S, Brierley A (2010) Through a glass less darkly—new approaches for the study of distribution, abundance and biology of krill. Deep Sea Res II 57:496–507CrossRefGoogle Scholar
  44. Noyon M, Gasparini S, Mayzaud P (2009) Feeding of Themisto libellula (Amphipoda Crustacea) on natural copepods assemblages in an Arctic fjord (Kongsfjorden, Svalbard). Polar Biol 32:1559–1570CrossRefGoogle Scholar
  45. Pakhomov EA, Perissinotto R (1996) Trophodynamics of the hyperiid amphipod Themisto gaudichaudi in the South Georgia region during late austral summer. Mar Ecol Prog Ser 134:91–100CrossRefGoogle Scholar
  46. Pinchuk AI, Coyle KO, Farley EV, Renner HM (2013) Emergence of the Arctic Themisto libellula (Amphipoda: Hyperiidae) on the southeastern Bering Sea shelf as a result of the recent cooling, and its potential impact on the pelagic food web. ICES J Mar Sci. doi: 10.1093/icesjms/fst031 Google Scholar
  47. Sameoto DD (1976) Distribution of sound scattering layers caused by Euphausiids and their relationship to Chlorophyll a concentrations in the Gulf of St. Lawrence estuary. J Fish Res Board Can 33:681–687CrossRefGoogle Scholar
  48. Sameoto DD (1987) Vertical distribution and ecological significance of chaetognaths in the arctic environment of Baffin Bay. Polar Biol 7:317–328CrossRefGoogle Scholar
  49. Sameoto DD, Herman AW (1990) Life cycle and distribution of Calanus finmarchicus in deep basins on the Nova Scotia shelf and seasonal changes in Calanus spp. Mar Ecol Prog Ser 66:225–237CrossRefGoogle Scholar
  50. Sameoto DD, Cochrane NA, Herman AW (1985) Response of biological acoustic backscattering to ship’s lights. Can J Fish Aquat Sci 42:1535–1543CrossRefGoogle Scholar
  51. Sameoto DD, Cochrane NA, Herman AW (1993) Convergence of acoustic, optical, and net-catch estimates of euphausiid abundance; the use of artificial light to reduce net avoidance. Can J Fish Aquat Sci 50:334–346CrossRefGoogle Scholar
  52. Sargent JR, Falk-Petersen S (1981) Ecological investigations on the zooplankton community in Balsfjorden, Northern Norway: lipids and fatty acids in Meganyctiphanes norvegica, Thysanoessa raschi and T. inermis during mid-winter. Mar Biol 62:131–137CrossRefGoogle Scholar
  53. Schmidt K, Atkinson A, Steigenberger S, Fielding S, Lindsay MCM, Pond DW, Tarling GA, Klevjer TA, Allen CS, Nicol S, Achterberg WP (2011) Seabed foraging by Antarctic krill: implications for stock assessment, bentho–pelagic coupling, and the vertical transfer of iron. Limnol Oceanogr 56:1411–1428. doi: 10.4319/lo.2011.56.4.1411 CrossRefGoogle Scholar
  54. Schulz J, Barz K, Ayon P, Lüdtke A, Zielinski O, Mengedoht D, Hirche HJ (2010) Imaging of plankton specimens with the light frame on-sight key species investigation (LOKI) system. J Eur Opt Soc 5:100175. doi: 10.2971/jeos.2010.100 CrossRefGoogle Scholar
  55. Simard Y, Lacroix G, Legendre L (1986) Diel vertical migrations and nocturnal feeding of a dense coastal krill scattering layer (Thysanoessa raschi and Meganyctiphanes norvegica) in stratified surface waters. Mar Biol 91:93–105CrossRefGoogle Scholar
  56. Slagstad D, Downing K, Carlotti F, Hirche HJ (1999) Modelling the carbon export and air-sea flux of CO2 in the Greenland Sea. Deep Sea Res II 46:1511–1530CrossRefGoogle Scholar
  57. Sømme JD (1934) Animal plankton of the Norwegian coast waters and the open sea. I. Production of Calanus finmarchicus (Gunnerus) and Calanus hyperboreus (Krøyer) in the Lofoten area. Rep Nor Fish Invest 4:1–163Google Scholar
  58. Søreide JE, Leu E, Berge J, Graeve M, Falk-Petersen S (2010) Timing of blooms, algal food quality and Calanus glacialis reproduction and growth in a changing Arctic. Glob Change Biol 16:3154–3163Google Scholar
  59. Svendsen H, Beszczynska-Møller A, Hagen JO, Lefauconnier B, Tverberg V, Gerland S, Ørbøk JB, Bischof K, Papucci K, Zajaczkowski M, Azzolini R, Bruland O, Wiencke C (2002) The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard. Polar Res 21:133–166CrossRefGoogle Scholar
  60. Tande K (1982) Ecological investigations of the zooplankton community of Balsfjorden, northern Norway: population structure and breeding biology of the chaetognath Sagitta elegans Verrill. J Exp Mar Biol Ecol 68:13–24CrossRefGoogle Scholar
  61. Terazaki M (1998) Life history, distribution, seasonal variabiloty and feeding of the pelagic chaetognath Sagitta elegans in the subarctic Pacific—a review. Plankton Biol Ecol 45:1–17Google Scholar
  62. Thomsen L (2003) The benthic boundary layer. In: Wefer G, Billett D, Hebbeln D, Jørgensen BB, Schlüter M, van Weering TCE (eds) Ocean Marine Systems. Springer, Berlin, pp 143–153Google Scholar
  63. Vinogradov GM (1999) Deep-sea near-bottom swarms of pelagic amphipods Themisto: observations from submersibles. Sarsia 84:465–467CrossRefGoogle Scholar
  64. Vinogradov ME, Musayeva EI, Semenova TN (1990) Factors determining the position of the lower layer of mesoplankton concentration in the Black Sea. Oceanology 30:217–224Google Scholar
  65. Walkusz W, Kwaśniewski S, Falk-Petersen S, Hop H, Tverberg V, Wieczorek P, Węsławski JM (2009) Seasonal and spatial changes in the zooplankton community of Kongsfjorden, Svalbard. Polar Res 28:254–281CrossRefGoogle Scholar
  66. Węsławski JM, Legezynska J (1998) Glaciers caused zooplankton mortality? J Plankton Res 20:1233–1240CrossRefGoogle Scholar
  67. Węsławski JM, Pedersen G, Falk-Petersen S, Porazinski K (2000) Entrapment of macroplankton in an Arctic fjord basin, Kongsfjorden, Svalbard. Oceanologia 42:57–69Google Scholar
  68. Wienerroither R, Johannesen E, Dolgov A, Byrkjedal I, Bjelland O, Drevetnyak K, Eriksen KB, Høines Å, Langhelle G, Langøy H, Prokhorova T, Prozorkevich D, Wenneck T (2011) Atlas of the Barents Sea fishes. IMR/PINRO Joint Report Series 1-2011, ISSN 1502-8828Google Scholar
  69. Wishner K, Durbin E, Durbin A, Macaulay M, Winn H, Kenney R (1988) Copepod patches and right whales in the Great South Channel off New England. Bull Mar Sci 43:825–844Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Alfred Wegener Institute Helmholtz Centre for Marine and Polar ResearchBremerhavenGermany

Personalised recommendations