Skip to main content

High connectivity in a long-lived high-Arctic seabird, the ivory gull Pagophila eburnea

Abstract

Species may cope with rapid habitat changes by distribution shifts or adaptation to new conditions. A common feature of these responses is that they depend on how the process of dispersal connects populations, both demographically and genetically. We analyzed the genetic structure of a near-threatened high-Arctic seabird, the ivory gull (Pagophila eburnea) in order to infer the connectivity among gull colonies. We analyzed 343 individuals sampled from 16 localities across the circumpolar breeding range of ivory gulls, from northern Russia to the Canadian Arctic. To explore the roles of natal and breeding dispersal, we developed a population genetic model to relate dispersal behavior to the observed genetic structure of worldwide ivory gull populations. Our key finding is the striking genetic homogeneity of ivory gulls across their entire distribution range. The lack of population genetic structure found among colonies, in tandem with independent evidence of movement among colonies, suggests that ongoing effective dispersal is occurring across the Arctic Region. Our results contradict the dispersal patterns generally observed in seabirds where species movement capabilities are often not indicative of dispersal patterns. Model predictions show how natal and breeding dispersal may combine to shape the genetic homogeneity among ivory gull colonies separated by up to 2800 km. Although field data will be key to determine the role of dispersal for the demography of local colonies and refine the respective impacts of natal versus breeding dispersal, conservation planning needs to consider ivory gulls as a genetically homogeneous, Arctic-wide metapopulation effectively connected through dispersal.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • ACIA (2004) Impacts of a warming arctic: arctic climate impact assessment. Cambridge University Press, Cambridge

    Google Scholar 

  • Bell G, Gonzalez A (2011) Adaptation and evolutionary rescue in metapopulations experiencing environmental deterioration. Science 332:1327–1330

    Article  CAS  PubMed  Google Scholar 

  • BirdLife International (2012) Pagophila eburnea. In: IUCN 2013. IUCN red list of threatened species. Version 2013.2, http://www.iucnredlist.org. Accessed 23 Jan 2014

  • Bourne EC, Bocedi G, Travis JMJ, Pakeman RJ, Brooker RW, Schiffers K (2014) Between migration load and evolutionary rescue: dispersal, adaptation and the response of spatially structured populations to environmental change. Proc R Soc Lond Ser B: Biol Sci 281:20132795

    Article  Google Scholar 

  • Broquet T, Petit EJ (2009) Molecular estimation of dispersal for ecology and population genetics. Annu Rev Ecol Evol Syst 40:193–216

    Article  Google Scholar 

  • Broquet T, Angelone S, Jaquiéry J, Joly P, Léna JP, Lengagne T, Plénet S, Luquet E, Perrin N (2010) Genetic bottlenecks driven by population disconnection. Conserv Biol 24:1596–1605

    Article  PubMed  Google Scholar 

  • Canada Environment (2013) Recovery strategy for the ivory gull (Pagophila eburnea) in Canada. Recovery Planning, Environment Canada, Gatineau, Quebec

    Google Scholar 

  • Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026

    Article  CAS  PubMed  Google Scholar 

  • Chikhi L, Sousa VC, Luisi P, Goossens B, Beaumont MA (2010) The confounding effects of population structure, genetic diversity and the sampling scheme on the detection and quantification of population size changes. Genetics 186:983–995

    Article  PubMed Central  PubMed  Google Scholar 

  • Clobert J, Danchin E, Dhondt A, Nichols J (2001) Dispersal. Oxford University Press, New York

    Google Scholar 

  • COSEWIC (2006) COSEWIC Assessment on the Ivory Gull Pagophila eburnea in Canada Committee on the Status of Endangered Wildlife in Canada, Ottawa, ON, Canada

  • Crow JF, Aoki K (1984) Group selection for a polygenic behavioral trait: estimating the degree of population subdivision. Proc Natl Acad Sci USA 81:6073–6077

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de Korte J, Volkov AE (1993) Large colony of ivory gulls Pagophila eburnea at Domashniy Island, Severnaya Zemlya. Sula 7:107–110

    Google Scholar 

  • Dugger KM, Ainley DG, Lyver POB, Barton K, Ballard G (2010) Survival differences and the effect of environmental instability on breeding dispersal in an Adelie penguin meta-population. Proc Natl Acad Sci USA 107:12375–12380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Felsenstein J (1971) Inbreeding and variance effective numbers in populations with overlapping generations. Genetics 168:581–597

    Google Scholar 

  • Friesen VL, Burg TM, McCoy KD (2007) Mechanisms of population differentiation in seabirds. Mol Ecol 16:1765–1785

    Article  CAS  PubMed  Google Scholar 

  • Gaston AJ, Brewer D, Diamond AW, Woodsworth EJ, Collins BT (2008) Canadian atlas of bird banding. Volume 2, Seabirds, 1921–1995. Canadian Wildlife Service, Environment Canada, Canada

  • Gauthier G, Milot E, Weimerskirch H (2010) Small-scale dispersal and survival in a long-lived seabird, the wandering albatross. J Anim Ecol 79:879–887

    PubMed  Google Scholar 

  • Gavrilo MV (2011) Ivory gull Pagophila eburnea (Phipps, 1774) in the Russian Arctic: breeding patterns of species within the current species range optimum. PhD, Saint-Petersburg State University, Saint-Petersburg, Russia

  • Genovart M, Thibault JC, Igual JM, Bauza-Ribot MD, Rabouam C, Bretagnolle V (2013) Population structure and dispersal patterns within and between Atlantic and Mediterranean populations of a large-range pelagic seabird. Plos One 8:e70711

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gienapp P, Teplitsky C, Alho JS, Mills JA, Merila J (2008) Climate change and evolution: disentangling environmental and genetic responses. Mol Ecol 17:167–178

    Article  CAS  PubMed  Google Scholar 

  • Gilchrist HG, Mallory ML (2005) Declines in abundance and distribution of the ivory gull (Pagophila eburnea) in Arctic Canada. Biol Conserv 121:303–309

    Article  Google Scholar 

  • Gilchrist HG, Strøm H, Gavrilo MV, Mosbech A (2008) International ivory gull conservation strategy and action plan vol No. 18. Conservation of Arctic Flora and Fauna (CAFF) International Secretariat, Circumpolar Seabird Group (CBird), Akureyri

  • Gilg O, Boertmann D, Merkel F, Aebischer A, Sabard B (2009) Status of the endangered ivory gull, Pagophila eburnea, in Greenland. Polar Biol 32:1275–1286

    Article  Google Scholar 

  • Gilg O, Strøm H, Aebischer A, Gavrilo MV, Volkov A, Miljeteig C, Sabard B (2010) Post-breeding movements of the northeast Atlantic ivory gull Pagophila eburnea populations. J Avian Biol 41:532–542

    Article  Google Scholar 

  • Gilg O, Aars J, Fort J, Gauthier G, Gremillet D, Ims RA, Kovacs KM, Meltofte H, Moreau J, Post E, Schmidt NM, Yannic G, Bollache L (2012) Climate change and the ecology and evolution of Arctic vertebrates. Ann NY Acad Sci 1249:166–190

    Article  PubMed  Google Scholar 

  • Goudet J (2005) FSTAT: a program to estimate and test gene diversities and fixation indices (version 2.9.3). University of Lausanne, Lausanne. http://www.unil.ch/dee/page6767_en.html

  • Goudet J, Raymond M, deMeeus T, Rousset F (1996) Testing differentiation in diploid populations. Genetics 144:1933–1940

    PubMed Central  CAS  PubMed  Google Scholar 

  • Greenwood PJ, Harvey PH (1982) The natal and breeding dispersal of birds. Annu Rev Ecol Syst 13:1–21

    Article  Google Scholar 

  • Hill WG (1972) Effective size of populations with overlapping generations. Theor Popul Biol 3:278–289

    Article  CAS  PubMed  Google Scholar 

  • Hoenig JM, Heisey DM (2001) The abuse of power: the pervasive fallacy of power calculations for data analysis. Am Stat 55:19–24

    Article  Google Scholar 

  • Hoffmann AA, Sgro CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2007) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the Fourth Assessment Report of the intergovernmental panel on climate change. Cambridge University Press, New York

  • Jones O, Wang J (2009) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555

    Article  PubMed  Google Scholar 

  • Kimura M (1969) Number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. Genetics 61:893–903

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kimura M, Crow J (1963) The measurement of effective population number. Evolution 17:279–288

    Article  Google Scholar 

  • Lande R, Shannon S (1996) The role of genetic variation in adaptation and population persistence in a changing environment. Evolution 50:434–437

    Article  Google Scholar 

  • Laporte V, Charlesworth B (2002) Effective population size and population subdivision in demographically structured populations. Genetics 162:501–519

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lawrence H, Lyver P, Gleeson D (2014) Genetic panmixia in New Zealand grey-faced petrel: implications for conservation and restoration. Emu 114:249–258

    Article  Google Scholar 

  • Leblois R, Estoup A, Streiff R (2006) Genetics of recent habitat contraction and reduction in population size: does isolation by distance matter? Mol Ecol 15:3601–3615

    Article  PubMed  Google Scholar 

  • Lebreton JD, Hines JE, Pradel R, Nichols JD, Spendelow JA (2003) Estimation by capture–recapture of recruitment and dispersal over several sites. Oikos 101:253–264

    Article  Google Scholar 

  • Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD (2009) The velocity of climate change. Nature 462:1052–1055

    Article  CAS  PubMed  Google Scholar 

  • Lorenzen ED, Nogues-Bravo D, Orlando L, Weinstock J, Binladen J, Marske KA, Ugan A, Borregaard MK, Gilbert MTP, Nielsen R, Ho SYW, Goebel T, Graf KE, Byers D, Stenderup JT, Rasmussen M, Campos PF, Leonard JA, Koepfli KP, Froese D, Zazula G, Stafford TW, Aaris-Sorensen K, Batra P, Haywood AM, Singarayer JS, Valdes PJ, Boeskorov G, Burns JA, Davydov SP, Haile J, Jenkins DL, Kosintsev P, Kuznetsova T, Lai XL, Martin LD, McDonald HG, Mol D, Meldgaard M, Munch K, Stephan E, Sablin M, Sommer RS, Sipko T, Scott E, Suchard MA, Tikhonov A, Willerslev R, Wayne RK, Cooper A, Hofreiter M, Sher A, Shapiro B, Rahbek C, Willerslev E (2011) Species-specific responses of Late Quaternary megafauna to climate and humans. Nature 479:359–364

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lyngs P (2003) Migration and winter ranges of birds in Greenland: an analysis of ringing recoveries. Dansk Ornitologisk Forenings Tidsskrift 97:1–167

    Google Scholar 

  • MacDonald SD (1976) Phantoms of the polar pack-ice. Audubon 78:2–19

    Google Scholar 

  • Mallory ML, Stenhouse IJ, Gilchrist HG, Robertson G, Haney JC, Macdonald SD (2008) Ivory gull (Pagophila eburnea). In: Poole A (ed) The Birds of North America Online. Ithaca: Cornell Laboratory of Ornithology; Retrieved from The Birds of North America Online: http://bna.birds.cornell.edu/BNA/species/175/. doi:10.2173/bna.175

  • Mallory ML, Allard KA, Braune BM, Gilchrist HG, Thomas VG (2012) New longevity record for ivory gulls (Pagophila eburnea) and evidence of natal philopatry. Arctic 65:98–101

    Article  Google Scholar 

  • Milot E, Weimerskirch H, Bernatchez L (2008) The seabird paradox: dispersal, genetic structure and population dynamics in a highly mobile, but philopatric albatross species. Mol Ecol 17:1658–1673

    Article  CAS  PubMed  Google Scholar 

  • Nisbet ICT, Cam E (2002) Test for age-specificity in survival of the common tern. J Appl Stat 29:65–83

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Penteriani V, Ferrer M, Delgado MM (2011) Floater strategies and dynamics in birds, and their importance in conservation biology: towards an understanding of nonbreeders in avian populations. Anim Conserv 14:233–241

    Article  Google Scholar 

  • Rousset F (2001) Genetic approaches to the estimation of dispersal rates. In: Clobert J, Danchin E, Dhondt AA, Nichols JD (eds) Dispersal. Oxford University Press, New York

    Google Scholar 

  • Rousset F (2004) Genetic structure and selection in subdivided populations. Monographs in population biology. Princeton University Press, Princeton

    Google Scholar 

  • Royston S, Carr S (2014) Conservation genetics of high-arctic Gull species at risk: I. Diversity in the mtDNA control region of circumpolar populations of the Endangered Ivory Gull (Pagophila eburnea). Mitochondrial DNA 26:1–4

    Article  Google Scholar 

  • Ryman N, Palm S (2006) POWSIM: a computer program for assessing statistical power when testing for genetic differentiation. Mol Ecol Notes 6:600–602

    Article  Google Scholar 

  • Slatkin M (1991) Inbreeding coefficients and coalescence times. Genet Res 58:167–175

    Article  CAS  PubMed  Google Scholar 

  • Spencer NC, Gilchrist HG, Mallory ML (2014) Annual movement patterns of endangered ivory gulls: the importance of sea ice. PLoS ONE 9:e115231

    Article  PubMed Central  PubMed  Google Scholar 

  • Stenhouse IJ, Robertson GJ, Gilchrist HG (2004) Recoveries and survival rates of ivory gulls (Pagophila eburnea) banded in Nunavut, Canada, 1971–1999. Waterbirds 27:486–492

    Article  Google Scholar 

  • Stewart JR, Dalen L (2008) Is the glacial refugium concept relevant for northern species? A comment on Pruett and Winker 2005. Clim Change 86:19–22

    Article  Google Scholar 

  • Stewart JR, Lister A (2001) Cryptic northern refugia and the origins of the modern biota. Trends Ecol Evol 16:608–613

    Article  Google Scholar 

  • Travis JMJ, Delgado M, Bocedi G, Baguette M, Barton K, Bonte D, Boulangeat I, Hodgson JA, Kubisch A, Penteriani V, Saastamoinen M, Stevens VM, Bullock JM (2013) Dispersal and species’ responses to climate change. Oikos 122:1532–1540

    Article  Google Scholar 

  • Votier SC, Birkhead TR, Oro D, Trinder M, Grantham MJ, Clark JA, McCleery RH, Hatchwell BJ (2008) Recruitment and survival of immature seabirds in relation to oil spills and climate variability. J Anim Ecol 77:974–983

    Article  CAS  PubMed  Google Scholar 

  • Wakeley J (2009) Coalescent theory. Roberts and Company Publishers, Greenwood Village, Colorado

    Google Scholar 

  • Wang J (2012) Computationally efficient sibship and parentage assignment from multilocus marker data. Genetics 191:183–194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Waples RS (1998) Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. J Hered 89:438–450

    Article  Google Scholar 

  • Waples RS, Gaggiotti O (2006) What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol Ecol 15:1419–1439

    Article  CAS  PubMed  Google Scholar 

  • Waples RS, Teel DJ (1990) Conservation genetics of Pacific salmon. I. Temporal changes in allele frequency. Conserv Biol 4:144–156

    Article  Google Scholar 

  • Weatherhead P, Forbes MRL (1994) Natal philopatry in birds: genetic or ecological influences? Behav Ecol 5:426–433

    Article  Google Scholar 

  • Weir B, Cockerham C (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Welch AJ, Fleischer RC, James HF, Wiley AE, Ostrom PH, Adams J, Duvall F, Holmes N, Hu D, Penniman J, Swindle KA (2012) Population divergence and gene flow in an endangered and highly mobile seabird. Heredity 109:19–28

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Westneat DF, Stewart IRK (2003) Extra-pair paternity in birds: causes, correlates, and conflict. Annu Rev Ecol Evol Syst 34:365–396

    Article  Google Scholar 

  • Wojczulanis-Jakubas K, Kilikowska A, Harding AMA, Jakubas D, Karnovsky NJ, Steen H, Strom H, Welcker J, Gavrilo M, Lifjeld JT, Johnsen A (2014) Weak population genetic differentiation in the most numerous Arctic seabird, the little auk. Polar Biol 37:621–630

    Article  Google Scholar 

  • Wright S (1931) Evolution in mendelian populations. Genetics 16:97–159

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yannic G, Sermier R, Aebischer A, Gavrilo MV, Gilg O, Miljeteig C, Sabard B, Strom H, Pouive E, Broquet T (2011) Description of microsatellite markers and genotyping performances using feathers and buccal swabs for the ivory gull (Pagophila eburnea). Mol Ecol Resour 11:877–889

    Article  PubMed  Google Scholar 

  • Yannic G, Aebischer A, Sabard B, Gilg O (2014a) Complete breeding failures in ivory gull following unusual rainy storms in North Greenland. Polar Res 33:22749

    Article  Google Scholar 

  • Yannic G, Pellissier L, Ortego J, Lecomte N, Couturier S, Cuyler C, Dussault C, Hundermark KJ, Irvine RJ, Jenkins DA, Kolpashikov L, Mager K, Musiani M, Parker KL, Røed KH, Sipko T, Þórisson SG, Weckworth BV, Guisan A, Bernatchez L, Côté SD (2014b) Genetic diversity in caribou linked to past and future climate change. Nat Clim Change 4:132–137

    Article  Google Scholar 

  • Yearsley J, Viard F, Broquet T (2013) The effect of collective dispersal on the genetic structure of a subdivided population. Evolution 67:1649–1659

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from foundation Ellis Elliot (Switzerland), Société vaudoise des Sciences naturelles (Switzerland) and Nos Oiseaux (Switzerland) to G.Y., by a foundation Agassiz (Switzerland) grant to T.B. and by the Nicolas Perrin’s research group, Department of Ecology and Evolution at University of Lausanne, Switzerland. Field work in Greenland was supported by the National Geographic Society, Prix Gore-Tex initiative, Foundation Avenir Finance, the Arctic Ocean Diversity Census of Marine Life Project, CNES, CLS and F. Paulsen. The ivory gull project was part of the work plan of the Joint Norwegian-Russian Commission on Environmental Protection, and fieldwork in Norway and Russia was funded by the Norwegian Ministry of Environment, the Norwegian Polar Institute, Arctic and Antarctic Research Institute and Russian IPY 2007/08 program. We are grateful to Emmanuelle Pouivé, Brigitte Sabard, Vladimir Sokolov and Oleg Prodan, Vorkuta helicopter crew commanded by Sergey Kiryushkin for logistical assistance, Russian colleagues Mikhail Ivanov, Andrey and Elena Volkov for participating in fieldwork. Constructive comments by Nigel G. Yoccoz and two anonymous referees improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn Yannic.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1046 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yannic, G., Yearsley, J.M., Sermier, R. et al. High connectivity in a long-lived high-Arctic seabird, the ivory gull Pagophila eburnea . Polar Biol 39, 221–236 (2016). https://doi.org/10.1007/s00300-015-1775-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-015-1775-z

Keywords

  • Natal dispersal
  • Breeding dispersal
  • Effective number of breeders
  • Population genetic structure
  • Overlapping generation model