Skip to main content
Log in

Oxidative damage and antioxidant defence parameters in the Antarctic bivalve Laternula elliptica as biomarkers for pollution impacts

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The Antarctic continent is increasingly vulnerable to anthropogenic pollution; however, assessments of the impacts that chemical pollutants have on cold-adapted marine organisms are limited. Oxidative stress (OS) occurs when the rate of reactive oxygen species generation exceeds the scavenging capacity of an organism’s antioxidant (AO) system and is an important unifying feature underlying the toxicity of many chemical contaminants in aquatic organisms. The Antarctic bivalve Laternula elliptica is a widely distributed, infaunal filter-feeding organism. We analysed AO enzyme activities, levels of the molecular antioxidant glutathione, protein carbonylation and lipid peroxidation as OS biomarkers in L. elliptica from contaminant-impacted sites near McMurdo Station and the relatively pristine Cape Evans. The objective was to evaluate the effectiveness of these biomarkers for detecting contaminant stress in this cold-adapted marine invertebrate. The concentrations of total polycyclic aromatic hydrocarbons were quantified as a proxy for contamination and found to be elevated in gonad and muscle tissues from L. elliptica dwelling in contaminated sites. These individuals exhibited a greater degree of OS than those from the reference site, evidenced by increases in oxidative lipid and protein damage, as well as an upregulation of AO defences. Coincidentally, L. elliptica from the contaminated sites were significantly smaller in shell length (1.3-fold) than those from the reference site. Oxidative biomarkers proved to be useful indicators of contamination exposure in the present study and were used to document ongoing biological impacts from historic and current pollution in McMurdo Sound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abele D, Puntarulo S (2004) Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish. Comp Biochem Physiol A Mol Integr Physiol 138:405–415. doi:10.1016/j.cbpb.2004.05.013

    Article  PubMed  Google Scholar 

  • Ahn IY (1993) Enhanced particle-flux through the biodeposition by the Antarctic suspension-feeding bivalve Laternula elliptica in Marian Cove, King George Island. J Exp Mar Biol Ecol 171:75–90. doi:10.1016/0022-0981(93)90141-a

    Article  Google Scholar 

  • Ahn I-Y (1994) Ecology of the Antarctic bivalve Laternula elliptica (King and Broderip) in Collins Harbor, King George Island: benthic environment and an adaptive strategy. Mem Natl Inst Polar Res Spec Issue 50:1–10

    Google Scholar 

  • Ahn IY, Lee SH, Kim KT, Shim JE, Kim DY (1996) Baseline heavy metal concentrations in the Antarctic clam, Laternula elliptica in Maxwell Bay, King George Island, Antarctica. Mar Pollut Bull 32:592–598. doi:10.1016/0025-326x(95)00247-k

    Article  CAS  Google Scholar 

  • Ahn IY, Cho KW, Choi KS, Seo Y, Shin J (2000) Lipid content and composition of the Antarctic lamellibranch, Laternula elliptica (King & Broderip) (Anomalodesmata : Laternulidae), in King George Island during an austral summer. Polar Biol 23:24–33. doi:10.1007/s003000050004

    Article  Google Scholar 

  • Ahn I, Kang J, Kim K (2001) The effect of body size on metal accumulations in the bivalve Laternula elliptica. Antarct Sci 13:355–362. doi:10.1017/S0954102001000505

    Article  Google Scholar 

  • Almeida EA et al (2007) Oxidative stress in Perna perna and other bivalves as indicators of environmental stress in the Brazilian marine environment: Antioxidants, lipid peroxidation and DNA damage. Comp Biochem Physiol A Mol Integr Physiol 146:588–600. doi:10.1016/j.cbpa.2006.02.040

    Article  Google Scholar 

  • Banowetz GM, Dierksen KP, Azevedo MD, Stout R (2004) Microplate quantification of plant leaf superoxide dismutases. Anal Biochem 332:314–320. doi:10.1016/j.ab.2004.06.015

    Article  CAS  PubMed  Google Scholar 

  • Barry JP, Dayton PK (1988) Current patterns in McMurdo Sound, Antarctica, and their relationship to local biotic communities. Polar Biol 8:367–376

    Article  Google Scholar 

  • Baussant T et al (2009) Enzymatic and cellular responses in relation to body burden of PAHs in bivalve molluscs: a case study with chronic levels of North Sea and Barents Sea dispersed oil. Mar Pollut Bull 58:1796–1807. doi:10.1016/j.marpolbul.2009.08.007

    Article  CAS  PubMed  Google Scholar 

  • Benedetti M, Martuccio G, Fattorini D, Canapa A, Barucca M, Nigro M, Regoli F (2007) Oxidative and modulatory effects of trace metals on metabolism of polycyclic aromatic hydrocarbons in the Antarctic fish Trematomus bernacchiile. Aquat Toxicol 85:167–175. doi:10.1016/j.aquatox.2007.08.009

    Article  CAS  PubMed  Google Scholar 

  • Brey T, Mackensen A (1997) Stable isotopes prove shell growth bands in the Antarctic bivalve Laternula elliptica to be formed annually. Polar Biol 17:465–468. doi:10.1007/s003000050143

    Article  Google Scholar 

  • Brogdon WG, Barber AM (1990) Microplate assay of glutathione S-transferase activity for resistance detection in single-mosquito triturates. Comp Biochem Physiol B Biochem Mol Biol 96:339–342. doi:10.1016/0305-0491(90)90385-7

    Article  CAS  Google Scholar 

  • Burritt DJ (2008) The polycyclic aromatic hydrocarbon phenanthrene causes oxidative stress and alters polyamine metabolism in the aquatic liverwort Riccia fluitans L. Plant Cell Environ 31:1416–1431. doi:10.1111/j.1365-3040.2008.01846.x

    Article  CAS  PubMed  Google Scholar 

  • Camus L, Jones MB, Børseth JF, Grøsvik BE, Regoli F, Depledge MH (2002) Total oxyradical scavenging capacity and cell membrane stability of haemocytes of the Arctic scallop, Chlamys islandicus, following benzo[a]pyrene exposure. Mar Environ Res 54:425–430. doi:10.1016/S0141-1136(02)00140-X

    Article  CAS  PubMed  Google Scholar 

  • Camus L et al (2003) Biomarker responses and PAH uptake in Mya truncata following exposure to oil-contaminated sediment in an Arctic fjord (Svalbard). Sci Total Environ 308:221–234. doi:10.1016/s0048-9697(02)00616-2

    Article  CAS  PubMed  Google Scholar 

  • Chapman PM, Riddle MJ (2003) Missing and needed: polar marine ecotoxicology. Mar Pollut Bull 46:927–928. doi:10.1016/s0025-326x(03)00252-2

    Article  CAS  PubMed  Google Scholar 

  • Chapman PM, Riddle MJ (2005) Toxic effects of contaminants in polar marine environments. Environ Sci Technol 39:200A–207A. doi:10.1021/es0532537

    Article  CAS  PubMed  Google Scholar 

  • Conlan KE, Kim SL, Thurber AR, Hendrycks E (2010) Benthic changes at McMurdo Station, Antarctica following local sewage treatment and regional iceberg-mediated productivity decline. Mar Pollut Bull 60:419–432. doi:10.1016/j.marpolbul.2009.10.009

    Article  CAS  PubMed  Google Scholar 

  • Costantini D, Rowe M, Butler MW, McGraw KJ (2010) From molecules to living systems: historical and contemporary issues in oxidative stress and antioxidant ecology. Funct Ecol 24:950–959. doi:10.1111/j.1365-2435.2010.01746.x

    Article  Google Scholar 

  • Cribb AE, Leeder JS, Spielberg SP (1989) Use of a microplate reader in an assay of glutathione-reductase using 5,5′-dithiobis(2-nitrobenzoic acid). Anal Biochem 183:195–196. doi:10.1016/0003-2697(89)90188-7

    Article  CAS  PubMed  Google Scholar 

  • de Hoop L, Schipper AM, Leuven R, Huijbregts MAJ, Olsen GH, Smit MGD, Hendriks AJ (2011) Sensitivity of polar and temperate marine organisms to oil components. Environ Sci Technol 45:9017–9023. doi:10.1021/es202296a

    Article  PubMed  Google Scholar 

  • Duquesne S, Riddle M, Schulz R, Liess M (2000) Effects of contaminants in the Antarctic environment - potential of the gammarid amphipod crustacean Paramorea walkeri as a biological indicator for Antarctic ecosystems based on toxicity and bioaccumulation of copper and cadmium. Aquat Toxicol 49:131–143. doi:10.1016/s0166-445x(99)00067-3

    Article  CAS  PubMed  Google Scholar 

  • Edge KJ, Johnston EL, Roach AC, Ringwood AH (2012) Indicators of environmental stress: cellular biomarkers and reproductive responses in the Sydney rock oyster (Saccostrea glomerata). Ecotoxicology 21:1415–1425. doi:10.1007/s10646-012-0895-2

    Article  CAS  PubMed  Google Scholar 

  • EPA (1987) Quality Criteria for Water, 1986, vol 440/5-86-001. US Environmental Protection Agency, Washington

    Google Scholar 

  • Estevez MS, Abele D, Puntarulo S (2002) Lipid radical generation in polar (Laternula elliptica) and temperate (Mya arenaria) bivalves. Comp Biochem Physiol B Biochem Mol Biol 132:729–737. doi:10.1016/S1096-4959(02)00089-1

    Article  Google Scholar 

  • Fryer HJL, Davis GE, Manthorpe M, Varon S (1986) Lowry protein assay using an automatic microtiter plate spectrophotometer. Anal Biochem 153:262–266. doi:10.1016/0003-2697(86)90090-4

    Article  CAS  PubMed  Google Scholar 

  • Ghosh R, Lokman PM, Lamare MD, Metcalf VJ, Burritt DJ, Davison W, Hageman KJ (2013) Changes in physiological responses of an Antarctic fish, the emerald rock cod (Trematomus bernacchii), following exposure to polybrominated diphenyl ethers (PBDEs). Aquat Toxicol 128:91–100. doi:10.1016/j.aquatox.2012.11.019

    Article  PubMed  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases—first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, 4th edn. Oxford University Press, New York

    Google Scholar 

  • Horak P, Cohen A (2010) How to measure oxidative stress in an ecological context: methodological and statistical issues. Funct Ecol 24:960–970. doi:10.1111/j.1365-2435.2010.01755.x

    Article  Google Scholar 

  • Hossain MA, Hasanuzzaman M, Fujita M (2010) Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiol Mol Biol Plants 16:259–272. doi:10.1007/s12298-010-0028-4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hylland K (2006) Polycyclic aromatic hydrocarbon (PAH) ecotoxicology in marine ecosystems. J Toxicol Environ Health A 69:109–123. doi:10.1080/15287390500259327

    Article  CAS  PubMed  Google Scholar 

  • Isaksson C (2010) Pollution and its impact on wild animals: a meta-analysis on oxidative stress. EcoHealth 7:342–350. doi:10.1007/s10393-010-0345-7

    Article  PubMed  Google Scholar 

  • Janssens BJ, Childress JJ, Baguet F, Rees JF (2000) Reduced enzymatic antioxidative defense in deep-sea fish. J Exp Biol 203:3717–3725

    CAS  PubMed  Google Scholar 

  • Kang D, Ahn I, Choi K (2009) The annual reproductive pattern of the Antarctic clam, Laternula elliptica from Marian Cove, King George Island. Polar Biol 32:517–528. doi:10.1007/s00300-008-0544-7

    Article  Google Scholar 

  • Kennicutt MC et al (1995) Human contamination of the marine environment—Arthur Harbor and McMurdo Sound, Antarctica. Environ Sci Technol 29:1279–1287. doi:10.1021/es00005a600

    Article  CAS  Google Scholar 

  • Kennicutt MC et al (2010) Temporal and spatial patterns of anthropogenic disturbance at McMurdo Station, Antarctica. Environ Res Lett. doi:10.1088/1748-9326/5/3/034010

    Google Scholar 

  • King CK, Riddle MJ (2001) Effects of metal contaminants on the development of the common Antarctic sea urchin Sterechinus neumayeri and comparisons of sensitivity with tropical and temperate echinoids. Mar Ecol Prog Ser 215:143–154. doi:10.3354/meps215143

    Article  CAS  Google Scholar 

  • Lam PKS (2009) Use of biomarkers in environmental monitoring. Ocean Coast Manage 52:348–354. doi:10.1016/j.ocecoaman.2009.04.010

    Article  Google Scholar 

  • Lenihan HS (1992) Benthic marine pollution around McMurdo Station, Antarctica—a summary of findings. Mar Pollut Bull 25:318–323. doi:10.1016/0025-326x(92)90689-4

    Article  CAS  Google Scholar 

  • Lenihan HS, Kiest KA, Conlan KE, Slattery PN, Konar BH, Oliver JS (1995) Patterns of survival and behavior in Antarctic benthic invertebrates exposed to contaminated sediments: field and laboratory bioassay experiments. J Exp Mar Biol Ecol 192:233–255. doi:10.1016/0022-0981(95)00070-8

    Article  Google Scholar 

  • Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278. doi:10.1146/annurev.physiol.68.040104.110001

    Article  CAS  PubMed  Google Scholar 

  • Liess M, Champeau O, Riddle M, Schulz R, Duquesne S (2001) Combined effects of ultraviolet-B radiation and food shortage on the sensitivity of the Antarctic amphipod Paramoera walkeri to copper. Environ Toxicol Chem 20:2088–2092. doi:10.1002/etc.5620200931

    Article  CAS  PubMed  Google Scholar 

  • Lister KN, Lamare MD, Burritt DJ (2010) Sea ice protects the embryos of the Antarctic sea urchin Sterechinus neumayeri from oxidative damage due to naturally enhanced levels of UV-B radiation. J Exp Biol 213:1967–1975. doi:10.1242/jeb.039990

    Article  CAS  PubMed  Google Scholar 

  • Livingstone DR (2001) Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar Pollut Bull 42:656–666. doi:10.1016/s0025-326x(01)00060-1

    Article  CAS  PubMed  Google Scholar 

  • Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101:13–30. doi:10.1016/j.aquatox.2010.10.006

    Article  CAS  PubMed  Google Scholar 

  • Maral J, Puget K, Michelson AM (1977) Comparative study of superoxide-dismutase, catalse and glutathione peroxidase levels in erythrocytes of different animals. Biochem Biophys Res Commun 77:1525–1535. doi:10.1016/s0006-291x(77)80151-4

    Article  CAS  PubMed  Google Scholar 

  • McDonald SJ, Kennicutt MC, Sericano J, Wade TL, Liu H, Safe SH (1994) Correlation between bioassay-derived P4501A1 induction activity and chemical-analysis of clam (Laternula elliptica) extracts from McMurdo Sound, Antarctica. Chemosphere 28:2237–2248. doi:10.1016/0045-6535(94)90189-9

    Article  CAS  Google Scholar 

  • McDonald SJ, Kennicutt MC, Liu H, Safe SH (1995) Assessing aromatic hydrocarbon exposure in Antarctic fish captured near Palmer and McMurdo Stations, Antarctica. Arch Environ Contam Toxicol 29:232–240. doi:10.1007/BF00212974

    Article  CAS  Google Scholar 

  • Mihaljevic B, KatusinRazem B, Razem D (1996) The reevaluation of the ferric thiocyanate assay for lipid hydroperoxides with special considerations of the mechanistic aspects of the response. Free Rad Biol Med 21:53–63. doi:10.1016/0891-5849(95)02224-4

    Article  CAS  PubMed  Google Scholar 

  • Monserrat JM et al (2007) Pollution biomarkers in estuarine animals: critical review and new perspectives. Comp Biochem Physiol C Toxicol Pharmacol 146:221–234. doi:10.1016/j.cbpc.2006.08.012

    Article  PubMed  Google Scholar 

  • Monserrat J et al (2011) Biomarkers of oxidative stress: benefits and drawbacks for their application in biomonitoring of aquatic environments. In: Abele D, Vázquez-Medina J, Zenteno-Savín T (eds) Oxidative stress in aquatic ecosystems. Wiley, Chichester, pp 317–326

    Chapter  Google Scholar 

  • Nahrgang J, Camus L, Gonzalez P, Goksoyr A, Christiansen JS, Hop H (2009) PAH biomarker responses in polar cod (Boreogadus saida) exposed to benzo(a)pyrene. Aquat Toxicol 94:309–319. doi:10.1016/j.aquatox.2009.07.017

    Article  CAS  PubMed  Google Scholar 

  • Nahrgang J, Camus L, Gonzalez P, Jonsson M, Christiansen JS, Hop H (2010) Biomarker responses in polar cod (Boreogadus saida) exposed to dietary crude oil. Aquat Toxicol 96:77–83. doi:10.1016/j.aquatox.2009.09.018

    Article  CAS  PubMed  Google Scholar 

  • Negri A, Burns K, Boyle S, Brinkman D, Webster N (2006) Contamination in sediments, bivalves and sponges of McMurdo Sound, Antarctica. Environ Pollut 143:456–467. doi:10.1016/j.envpol.2005.12.005

    Article  CAS  PubMed  Google Scholar 

  • Nussey DH, Pemberton JM, Pilkington JG, Blount JD (2009) Life history correlates of oxidative damage in a free-living mammal population. Funct Ecol 23:809–817. doi:10.1111/j.1365-2435.2009.01555.x

    Article  Google Scholar 

  • Paglia DE, Valentine WN (1967) Studies on quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169

    CAS  PubMed  Google Scholar 

  • Principato GB, Rosi G, Talesa V, Giovannini E, Uotila L (1987) Purification and characterization of 2 forms of glyoxalase-II from the liver and brain of Wistar rats. Biochim Biophys Acta 911:349–355. doi:10.1016/0167-4838(87)90076-8

    Article  CAS  PubMed  Google Scholar 

  • Rahman I, Kode A, Biswas SK (2006) Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc 1:3159–3165. doi:10.1038/nprot.2006.378

    Article  CAS  PubMed  Google Scholar 

  • Ralph R, Maxwell JGH (1977) Growth of two Antarctic Lamellibranchs: adamussium colbecki and Laternula elliptica. Mar Biol 42:171–175

    Article  Google Scholar 

  • Regoli F, Giuliani ME (2014) Oxidative pathways of chemical toxicity and oxidative stress biomarkers in marine organisms. Mar Environ Res 93:106–117. doi:10.1016/j.marenvres.2013.07.006

    Article  CAS  PubMed  Google Scholar 

  • Regoli F, Principato G (1995) Glutathione, glutathione-dependant and antioxidant enzymes in mussel, Mytilus galloprovincialis, exposed to metals under field and laboratory conditions—implications for the use of biochemical biomarkers. Aquat Toxicol 31:143–164. doi:10.1016/0166-445x(94)00064-w

    Article  CAS  Google Scholar 

  • Regoli F, Nigro M, Bertoli E, Principato G, Orlando E (1997) Defenses against oxidative stress in the Antarctic scallop Adamussium colbecki and effects of acute exposure to metals. Hydrobiologia 355:139–144. doi:10.1023/a:1003094515903

    Article  CAS  Google Scholar 

  • Regoli F, Nigro M, Bompadre S, Winston GW (2000) Total oxidant scavenging capacity (TOSC) of microsomal and cytosolic fractions from Antarctic, Arctic and Mediterranean scallops: differentiation between three potent oxidants. Aquat Toxicol 49:13–25. doi:10.1016/s0166-445x(99)00070-3

    Article  CAS  PubMed  Google Scholar 

  • Regoli F, Nigro M, Chiantore M, Winston GW (2002) Seasonal variations of susceptibility to oxidative stress in Adamussium colbecki, a key bioindicator species for the Antarctic marine environment. Sci Total Environ 289:205–211. doi:10.1016/s0048-9697(01)01047-6

    Article  CAS  PubMed  Google Scholar 

  • Regoli F, Nigro M, Benedetti M, Gorbi S, Pretti C, Gervasi PG, Fattorini D (2005) Interactions between metabolism of trace metals and xenobiotic agonists of the aryl hydrocarbon receptor in the Antarctic fish Trematomus bernacchii environmental perspectives. Environ Toxicol Chem 24:1475–1482. doi:10.1897/04-514r.1

    Article  CAS  PubMed  Google Scholar 

  • Regoli F, Benedetti M, Krell A, Abele D (2011) Oxidative challenges in polar seas. In: Abele D, Vázquez-Medina J, Zenteno-Savín T (eds) Oxidative stress in aquatic ecosystems. Wiley, Chichester, pp 20–40

    Chapter  Google Scholar 

  • Reznick AZ, Packer L (1994) Oxidative damage to proteins—spectrophotometric method for carbonyl assay. Method Enzymol 233:357–363

    Article  CAS  Google Scholar 

  • Ringwood AH, Conners DE (2000) The effects of glutathione depletion on reproductive success in oysters, Crassostrea virginica. Mar Environ Res 50:207–211. doi:10.1016/s0141-1136(00)00069-6

    Article  CAS  PubMed  Google Scholar 

  • Urban H, Mercuri G (1998) Population dynamics of the bivalve Laternula elliptica from Potter Cove, King George Island, South Shetland Islands. Antarct Sci 10:153–160

    Article  Google Scholar 

  • Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M (2006) Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol Environ Saf 64:178–189. doi:10.1016/j.econenv.2005.03.013

    Article  CAS  PubMed  Google Scholar 

  • van de Crommenacker J, Komdeur J, Burke T, Richardson DS (2011) Spatio-temporal variation in territory quality and oxidative status: a natural experiment in the Seychelles warbler (Acrocephalus sechellensis). J Anim Ecol 80:668–680. doi:10.1111/j.1365-2656.2010.01792.x

    Article  PubMed Central  PubMed  Google Scholar 

  • Viarengo A, Canesi L, Martinez PG, Peters LD, Livingstone DR (1995) Prooxidant processes and antioxidant defense systems in the tissues of the Antarctic scallop (Adamussium colbecki) compared with the mediterranean scallop (Pecten jacobaeus). Comp Biochem Physiol B Biochem Mol Biol 111:119–126. doi:10.1016/0305-0491(94)00228-m

    Article  Google Scholar 

  • Wing SR, McLeod RJ, Leichter JJ, Frew RD, Lamare MD (2012) Sea ice microbial production supports Ross Sea benthic communities: influence of a small but stable subsidy. Ecology 93:314–323. doi:10.1890/11-0996.1

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the University of Otago, an Antarctica New Zealand/Kelly Tarleton’s postgraduate scholarship to K. L and logistical support from Antarctica New Zealand via event K-068, 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn N. Lister.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lister, K.N., Lamare, M.D. & Burritt, D.J. Oxidative damage and antioxidant defence parameters in the Antarctic bivalve Laternula elliptica as biomarkers for pollution impacts. Polar Biol 38, 1741–1752 (2015). https://doi.org/10.1007/s00300-015-1739-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-015-1739-3

Keywords

Navigation