Skip to main content
Log in

Mercury and methylmercury distribution in tissues of sculpins from the Bering Sea

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Fish skeletal muscle is often used to monitor mercury concentrations and is used by regulatory agencies to develop fish consumption advisories. However, the distribution of mercury species (MeHg+ and THg) in muscle tissue and other organs is not well understood in a number of fish species. Here we evaluate the spatial distribution of THg and MeHg+ in skeletal muscle and internal organs (heart, liver, and kidney) of 19 sculpin representing three species: Myoxocephalus scorpius (shorthorn sculpin n = 13), Myoxocephalus jaok (plain sculpin, n = 4), and Megalocottus platycephalus (belligerent sculpin, n = 2). Four subsamples of muscle were taken along the lateral aspect of each fish, from muscle A (cranial) to muscle D (caudal). Using Games–Howell post hoc procedure to compare mean concentrations of all tissues, muscle samples were significantly different from internal organs, although there was no difference between muscle-sampling locations. THg concentrations (ww) were higher in muscle (muscle A through D mean ± SD, 0.30 ± 0.19 mg/kg) than that in heart (0.06 ± 0.05 mg/kg), kidney (0.08 ± 0.06 mg/kg), and liver (0.09 ± 0.08 mg/kg). Percent MeHg+ decreased with age in both skeletal muscle and organs (p < 0.05). In contrast to some previous reports for other fish species, this study found significantly higher THg concentrations in muscle than in the liver. This study highlights the importance of using muscle samples when evaluating potential Hg exposure in risk assessments for piscivorous wildlife and human populations, and assumptions related to organ mercury concentrations should be examined with care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ball J, Esler D, Schmutz J (2007) Proximate composition, energetic value, and relative abundance of prey fish from the inshore eastern Bering Sea: implications for piscivorous predators. Polar Biol 30:699–708. doi:10.1007/s00300-006-0227-1

    Article  Google Scholar 

  • Balshaw S, Edwards JW, Ross KE, Daughtry BJ (2008) Mercury distribution in the muscular tissue of farmed southern bluefin tuna (Thunnus maccoyii) is inversely related to the lipid content of tissues. Food Chem 111:616–621. doi:10.1016/j.foodchem.2008.04.041

    Article  CAS  Google Scholar 

  • Bloom N (1989) Determination of picogram levels of methylmercury by aqueous phase ethylation, followed by cryogenic gas chromatography with cold vapour atomic fluorescence. Can J Fish Aquat Sci 46:1131–1140

    Article  CAS  Google Scholar 

  • Brookens TJ, O’Hara TM, Taylor RJ et al (2008) Total mercury body burden in Pacific harbor seal, Phoca vitulina richardii, pups from central California. Mar Pollut Bull 56:27–41. doi:10.1016/j.marpolbul.2007.08.010

    Article  CAS  PubMed  Google Scholar 

  • Burger J, Gochfeld M, Jeitner C et al (2007a) Mercury levels and potential risk from subsistence foods from the Aleutians. Sci Total Environ 384:93–105. doi:10.1016/j.scitotenv.2007.05.004

    Article  CAS  PubMed  Google Scholar 

  • Burger J, Gochfeld M, Jeitner C et al (2007b) Metal levels in flathead sole (Hippoglossoides elassodon) and great sculpin (Myoxocephalus polyacanthocephalus) from Adak Island, Alaska: potential risk to predators and fishermen. Environ Res 103:62–69. doi:10.1016/j.envres.2006.02.005

    Article  CAS  PubMed  Google Scholar 

  • Campana SE, Neilson JD (1985) Microstructure of fish otoliths. Can J Fish Aquat Sci 42:1014–1032

  • Canadian Food Inspection Agency (1998) Appendix 3: Canadian guidelines for chemical contaminants and toxins in fish and fish products. Fish products standards and methods manual

  • Clarkson TW (1997) The toxicology of mercury. Crit Rev Clin Lab Sci 34:369–403

    Article  CAS  PubMed  Google Scholar 

  • Coelho JP, Santos H, Reis AT et al (2010) Mercury bioaccumulation in the spotted dogfish (Scyliorhinus canicula) from the Atlantic Ocean. Mar Pollut Bull 60:1372–1375. doi:10.1016/j.marpolbul.2010.05.008

    Article  CAS  PubMed  Google Scholar 

  • Debes F, Budtz-Jørgensen E, Weihe P et al (2006) Impact of prenatal methylmercury exposure on neurobehavioral function at age 14 years. Neurotoxicol Teratol 28:363–375. doi:10.1016/j.ntt.2006.02.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dehn L-A, Sheffield GG, Follmann EH et al (2006) Feeding ecology of phocid seals and some walrus in the Alaskan and Canadian Arctic as determined by stomach contents and stable isotope analysis. Polar Biol 30:167–181. doi:10.1007/s00300-006-0171-0

    Article  Google Scholar 

  • Dietz R, Riget F, Born EW (2000) Geographical differences of zinc, cadmium, mercury and selenium in polar bears (Ursus maritimus) from Greenland. Sci Total Environ 245:25–47

    Article  CAS  PubMed  Google Scholar 

  • Dorts J, Kestemont P, Dieu M (2011) Proteomic response to sublethal cadmium exposure in a sentinel fish species, Cottus gobio. J Proteome Res 10:470–478

    Article  CAS  PubMed  Google Scholar 

  • Eagles-Smith CA, Ackerman JT, Yee J, Adelsbach TL (2009) Mercury demethylation in waterbird livers: dose-response thresholds and differences among species. Environ Toxicol Chem 28:568–577. doi:10.1897/08-245.1

    Article  CAS  PubMed  Google Scholar 

  • Ennis GP (1970) Age, growth, and sexual maturity of the shorthorn sculpin, Myoxocephalus scorpius, in Newfoundland waters. J Fish Res Board Canada 27:2155–2158. doi:10.1139/f70-244

    Article  Google Scholar 

  • Fox J, Weisberg S (2011) An {R} companion to applied regression, 2nd edn. Sage, Thousand Oaks

  • Frodello JP, Roméo M, Viale D (2000) Distribution of mercury in the organs and tissues of five toothed-whale species of the Mediterranean. Environ Pollut 108:447–452. doi:10.1016/S0269-7491(99)00221-3

    Article  CAS  PubMed  Google Scholar 

  • Giblin FJ, Massaro EJ (1973) Pharmacodynamics of methyl mercury in the rainbow trout (Salmo gairdneri): tissue uptake, distribution and excretion. Toxicol Appl Pharmacol 24:81–91. doi:10.1016/0041-008X(73)90183-X

    Article  CAS  PubMed  Google Scholar 

  • Guilherme S, Pereira ME, Santos MA, Pacheco M (2010) Mercury Distribution in Key Tissues of Caged Fish (Liza aurata) along an Environmental Mercury Contamination Gradient. Interdiscip Stud Environ Chem 3:165–173

  • Hamade AK (2014) Fish consumption advice for Alaskans: a risk management strategy to optimize the public’s health. Alaska Scientific Advisory Committee for Fish Consumption. Available at http://www.epi.alaska.gov/eh/fish/. Accessed 13 Feb 2015

  • Havelková M, Dušek L, Némethová D et al (2008) Comparison of mercury distribution between liver and muscle—a biomonitoring of fish from lightly and heavily contaminated localities. Sensors 8:4095–4109. doi:10.3390/s8074095

    Article  PubMed Central  Google Scholar 

  • Hyvärinen H, Sipilä T, Kunnasranta M, Koskela JT (1998) Mercury pollution and the Saimaa ringed seal (phoca hispida saimensis). Mar Pollut Bull 36:76–81. doi:10.1016/S0025-326X(98)90037-6

    Article  Google Scholar 

  • Jewett SC, Zhang X, Naidu AS et al (2003) Comparison of mercury and methylmercury in northern pike and Arctic grayling from western Alaska rivers. Chemosphere 50:383–392

    Article  PubMed  Google Scholar 

  • Komsta-Szumska E, Reuhl KR, Miller DR (1983) The effect of methylmercury on the distribution and excretion of selenium by the guinea pig. Arch Toxicol 54:303–310

    Article  CAS  PubMed  Google Scholar 

  • Luksenburg JA, Pedersen T (2002) Sexual and geographical variation in life history parameters of the shorthorn sculpin. J Fish Biol 61:1453–1464. doi:10.1111/j.1095-8649.2002.tb02489.x

    Article  Google Scholar 

  • Martoja R, Berry J-P (1980) Identification of tiemannite as a probable product of demethylation of mercury by selenium in cetaceans. A complement to the scheme of the biological cycle of mercury. Vie Milieu 30:7–10

    Google Scholar 

  • Mathieson S, George S, McLusky D (1996) Temporal variation of total mercury concentrations and burdens in the liver of eelpout Zoarces viviparus from the Forth Estuary, Scotland: implications for mercury biomonitoring. Mar Ecol Prog Ser 138:41–49

    Article  CAS  Google Scholar 

  • Mecklenburg CW, Mecklenburg TA, Thorsteinson LK (2002) Fishes of Alaska. American Fisheries Society, Bethesda

    Google Scholar 

  • Mieiro CL, Pacheco M, Pereira ME, Duarte AC (2009) Mercury distribution in key tissues of fish (Liza aurata) inhabiting a contaminated estuary-implications for human and ecosystem health risk assessment. J Environ Monit 11:1004–1012. doi:10.1039/b821253h

    Article  CAS  PubMed  Google Scholar 

  • Moses SK, Whiting AV, Bratton GR et al (2009) Inorganic nutrients and contaminants in subsistence species of Alaska: linking wildlife and human health. Int J Circumpolar Health 68:53–74

    PubMed Central  PubMed  Google Scholar 

  • Nam D-H, Basu N (2011) Rapid methods to detect organic mercury and total selenium in biological samples. Chem Cent J 5:1–5

    Article  Google Scholar 

  • Oken E, Wright RO, Kleinman KP et al (2005) Maternal fish consumption, hair mercury, and infant cognition in a US cohort. Environ Health Perspect 113:1376–1380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Palmisano F, Cardellicchio N, Zambonin PG (1995) Speciation of mercury in dolphin liver: a two-stage mechanism for the demethylation accumulation process and role of selenium. Mar Environ Res 40:109–121

    Article  CAS  Google Scholar 

  • Quakenbush L, Citta J, Crawford J (2011) Biology of the ringed seal (Phoca hispida) in Alaska, 1960–2010. Final Report to the National Marine Fisheries Service

  • Régine M-B, Gilles D, Yannick D, Alain B (2006) Mercury distribution in fish organs and food regimes: significant relationships from twelve species collected in French Guiana (Amazonian basin). Sci Total Environ 368:262–270

    Article  PubMed  Google Scholar 

  • Riget F, Muir D, Kwan M et al (2005) Circumpolar pattern of mercury and cadmium in ringed seals. Sci Total Environ 351–352:312–322. doi:10.1016/j.scitotenv.2004.05.032

    Article  PubMed  Google Scholar 

  • Rigét F, Dietz R, Born EW et al (2007) Temporal trends of mercury in marine biota of west and northwest Greenland. Mar Pollut Bull 54:72–80. doi:10.1016/j.marpolbul.2006.08.046

    Article  PubMed  Google Scholar 

  • Roos DH, Puntel RL, Lugokenski TH et al (2010) Complex methylmercury-cysteine alters mercury accumulation in different tissues of mice. Basic Clin Pharmacol Toxicol 107:789–792. doi:10.1111/j.1742-7843.2010.00577.x

    Article  CAS  PubMed  Google Scholar 

  • Seaman GA, Lowry LF, Frost KJ (1982) Foods of belukha whales (Delphinapterus leucas) in Western Alaska. Cetology 44:1–19

    Google Scholar 

  • Shultz C, Crear D (1976) The distribution of total and organic mercury in seven tissues of the Pacific blue marlin, Makaira nigricans. Pacific Sci 30:101–107

    CAS  Google Scholar 

  • Sonne C, Dietz R, Leifsson PS et al (2007) Are liver and renal lesions in East Greenland polar bears (Ursus maritimus) associated with high mercury levels? Environ Health 6:11. doi:10.1186/1476-069X-6-11

    Article  PubMed Central  PubMed  Google Scholar 

  • Sonne C, Bach L, Søndergaard J et al (2014) Evaluation of the use of common sculpin (Myoxocephalus scorpius) organ histology as bioindicator for element exposure in the fjord of the mining area Maarmorilik, West Greenland. Environ Res 133:304–311. doi:10.1016/j.envres.2014.05.031

    Article  CAS  PubMed  Google Scholar 

  • TenBrink TT, Hutchinson CE (2009) Age, growth, and mortality of the plain sculpin, Myoxocephalus jaok, in the eastern Bering Sea. North Pacific Research Board Project Final Report

  • The Commission of the European Communities (2001) EC No 466/20061Setting Maximum levels for cetain contaminants in foodstuffs. Section 3

  • United Nations Environment Programme Chemicals (2002) Chapter 4: Current mercury exposure and risk evaluations for humans. Global Mercury Assesment, Geneva

    Google Scholar 

  • US food and drug administration (2007) CPG Sec 540.600 Fish, shellfish, crustaceans, and other aquatic animals-fresh, frozen or processed- methyl mercury

  • Wagemann R, Trebacz E, Hunt R, Boila G (1997) Percent methylmercury and organic mercury in tissues of marine mammals and fish using different experimental and calculation methods. Environ Toxicol Chem 16:1859–1866

  • Wagemann R, Trebacz E, Boila G, Lockhart WL (1998) Methylmercury and total mercury in tissues of arctic marine mammals. Sci Total Environ 218:19–31

    Article  CAS  PubMed  Google Scholar 

  • Wagemann R, Trebacz E, Boila G, Lockhart WL (2000) Mercury species in the liver of ringed seals. Sci Total Environ 261:21–32. doi:10.1016/S0048-9697(00)00592-1

    Article  CAS  PubMed  Google Scholar 

  • Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

  • Wolfe MF, Schwarzbach S, Sulaiman RA (1998) Effects of mercury on wildlife: a comprehensive review. Environ Toxicol Chem 17:146–160

    Article  CAS  Google Scholar 

  • Womble JN, Sigler MF (2006) Seasonal availability of abundant, energy-rich prey influences the abundance and diet of a marine predator, the Steller sea lion Eumetopias jubatus. Mar Ecol Prog Ser 325:281–293

    Article  Google Scholar 

  • Zaboukas N, Miliou H, Megalofonou P, Moraitou-Apostolopoulou M (2006) Biochemical composition of the Atlantic bonito Sarda sarda from the Aegean Sea (eastern Mediterranean Sea) in different stages of sexual maturity. J Fish Biol 69:347–362. doi:10.1111/j.1095-8649.2006.01090.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research described was supported through the Center for Alaska Native Health Research by Award Number P20RR016430 from the National Center for Research Resources. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Center for Research Resources or the National Institutes of Health. The authors would like to thank Randy Brown of the National Fish and Wildlife Service and Gabrielle Johnson for assistance with mounting otoliths and aging the fish; Rachel Witter and Joel Pierson for their work in developing the rapid methyl mercury technique in our laboratory; Andrea Price Repetto and Bonita Dainowski for their help with the CVAFS MeHg+ determination; Sara Moses for assistance with editing the manuscript; the residents of Mekoryuk, Alaska for their generosity in providing time, skill, and fish; and the Yukon-Kuskokwim Health Consortium for their support for our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Harley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harley, J., Lieske, C., Bhojwani, S. et al. Mercury and methylmercury distribution in tissues of sculpins from the Bering Sea. Polar Biol 38, 1535–1543 (2015). https://doi.org/10.1007/s00300-015-1716-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-015-1716-x

Keywords

Navigation