Skip to main content
Log in

Photosynthetic light requirements and vertical distribution of macroalgae in newly ice-free areas in Potter Cove, South Shetland Islands, Antarctica

  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

In Potter Cove, Antarctica, newly ice-free areas appeared due to glacial retreat. Simultaneously, the inflow of sediment increased, reducing underwater photosynthetically active radiation (PAR, 400–700 nm). The aim of this study was to determine the photosynthetic characteristics of two macroalgal species colonizing three newly ice-free areas, A1, A2 and A3, with increasing degree of glacial influence from A1 to A3. Turbidity, salinity and temperature were measured, and light attenuation coefficients (K d) calculated and considered as a proxy for glacial sediment input. The lower depth distribution of the red alga Palmaria decipiens and the brown alga Himantothallus grandifolius was 10 m in A3, 20 m in A2 and 30 m in A1. Both species were then collected, at 5 and 10 m at all areas. Photosynthetic parameters and the daily metabolic carbon balance (CB) were determined. K d was significantly higher in A3 compared with A1 and A2. The CB of P. decipiens was significantly higher in A1 followed by A2 and A3, and significantly higher at shallower than at greater depth. For H. grandifolius CB was significantly lower in A3 and in A2 at deeper depths compared with the rest of areas and depths. The lower distribution limit of the algae was positively correlated to the light penetration. An increase in the sediment run-off due to global warming might lead to an elevation of the lower depth distribution limit but retreating glaciers can open new space for macroalgal colonization. These changes will probably affect macroalgal primary productivity in Potter Cove with consequences for the coastal ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Airoldi L (2003) The effects of sedimentation on rocky coast assemblages. In: Atkinson RJA, Gibson RN (eds) Oceanography and marine biology: an annual review. CRC Press, London, pp 161–236

    Google Scholar 

  • Anthony KRN, Ridd PV, Orpin AR et al (2004) Temporal variation in light availability in coastal benthic habitats: effects of clouds, turbidity, and tides. Limnol Oceanogr 49:2201–2211. doi:10.4319/lo.2004.49.6.2201

    Article  Google Scholar 

  • Arakawa H, Matsuike K (1992) Influence on insertion of zoospores, germination, survival, and maturation of gametophytes of brown algae exerted by sediments. Nippon Suis Gakk 58:619–625

    Article  Google Scholar 

  • Arnold KE, Manley SL (1985) Carbon allocation in Macrocystis pyrifera (Phaeophyta): intrinsic variability in photosynthesis and respiration. J Phycol 21:154–167. doi:10.1111/j.0022-3646.1985.00154.x

    Article  CAS  Google Scholar 

  • Bannister TT (1979) Quantitative description of steady state, nutrient-saturated algal growth, including adaptation. Limnol Oceanogr 24:76–96

    Article  CAS  Google Scholar 

  • Barnes D, Peck L (2008) Vulnerability of Antarctic shelf biodiversity to predicted regional warming. Clim Res 37:149–163. doi:10.3354/cr00760

    Article  Google Scholar 

  • Becker S, Graeve M, Bischof K (2010) Photosynthesis and lipid composition of the Antarctic endemic rhodophyte Palmaria decipiens: effects of changing light and temperature levels. Polar Biol 33:945–955. doi:10.1007/s00300-010-0772-5

    Article  Google Scholar 

  • Bischof K, Hanelt D, Wiencke C (1998) UV-radiation can affect depth-zonation of Antarctic macroalgae. Mar Biol 131:597–605

    Article  Google Scholar 

  • Campana GL, Zacher K, Fricke A et al (2009) Drivers of colonization and succession in polar benthic macro- and microalgal communities. Bot Mar 52:655–667. doi:10.1515/BOT.2009.076

    Article  Google Scholar 

  • Chapman AS, Fletcher RL (2002) Differential effects of sediments on survival and growth of Fucus serratus embryos (Fucales, Phaeophyceae). J Phycol 38:894–903. doi:10.1046/j.1529-8817.2002.t01-1-02025.x

    Article  Google Scholar 

  • Clark GF, Stark JS, Johnston EL et al (2013) Light-driven tipping points in polar ecosystems. Global Change Biol 12:3749–3761. doi:10.1111/gcb.12337

    Article  Google Scholar 

  • Cullen JJ (1990) On models of growth and photosynthesis in phytoplankton. Deep Sea Res 37:667–683. doi:10.1016/0198-0149(90)90097-F

    Article  CAS  Google Scholar 

  • Dennison WC, Alberte RS (1985) Role of daily light period in the depth distribution of Zostera marina (eelgrass). Mar Ecol Prog Ser 25:51–61

    Article  Google Scholar 

  • Di Rienzo JA, Casanoves F, Balzarini MG et al (2008) InfoStat versión 2008. Grupo InfoStat, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba

    Google Scholar 

  • Drew EA (1977) The physiology of photosynthesis and respiration in some Antarctic marine algae. Br Antarct Surv Bull 46:59–76

    Google Scholar 

  • Drew EA (1983) Physiology of Laminaria I. Use of excised lamina discs in short and long term experiments. PSZN I Mar Ecol 4:211–226

    Article  CAS  Google Scholar 

  • Drew EA, Hastings RM (1992) A year-round ecophysiological study of Himantothallus grandifolius (Desmarestiales, Phaeophyta) at Signy Island, Antarctica. Phycol 31:262–277. doi:10.2216/i0031-8884-31-3-4-262.1

    Article  Google Scholar 

  • Ducklow HW, Fraser WR, Meredith MP et al (2013) West Antarctic Peninsula: an ice-dependent coastal marine ecosystem in transition. Oceanography 26(3):190–203. doi:10.5670/oceanog.2013.62

    Article  Google Scholar 

  • Eggert A, Wiencke C (2000) Adaptation and acclimation of growth and photosynthesis of five Antarctic red algae to low temperatures. Polar Biol 23:609–618. doi:10.1007/s003000000130

    Article  Google Scholar 

  • Eraso A, Domínguez MA (2007) Physicochemical characteristics of the subglacier discharge in Potter Cove, King George Island, Antarctica. In: Tyk A, Stefaniak K (eds) Karst and cryokarst, studies of the faculty of earth sciences. University of Silesia 45:111–122

  • Eriksson BK, Johansson G (2005) Effects of sedimentation on macroalgae species-specific responses are related to reproductive traits. Oecologia 143:438–448. doi:10.1007/s00442-004-1810-1

    Article  PubMed  CAS  Google Scholar 

  • Frenette J, Demers S, Legendre L, Dodson J (1993) Lack of agreement among models for estimating photosynthetic parameters. Limnol Oceanogr 38(3):679–687. doi:10.4319/lo.1993.38.3.0679

    Article  CAS  Google Scholar 

  • Gómez I, Weykam G, Klöser H et al (1997) Photosynthetic light requirements, metabolic carbon balance and zonation of sublittoral macroalgae from King George Island (Antarctica). Mar Ecol Prog Ser 148:281–293. doi:10.3354/meps148281

    Article  Google Scholar 

  • Gómez I, Wulff A, Roleda MY et al (2009) Light and temperature demands of marine benthic microalgae and seaweeds in polar regions. Bot Mar 52: 593–608. doi: 10.1515/BOT.2009.073

  • Graham MH (1996) Effect of high irradiance on recruitment of the giant kelp Macrocystis (Phaeophyta) in shallow water. J Phycol 32:903-906. doi:10.1111/j.0022-3646.1996.00903.x

  • Hanelt D, Melchersmann B, Wiencke C, Nultsch W (1997) Effects of high light stress on photosynthesis of polar macroalgae in relation to depth distribution. Mar Ecol Prog Ser 149:255–266

    Article  CAS  Google Scholar 

  • Henley WJ (1993) Measurements and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. J Phycol 29:729–739. doi:10.1111/j.0022-3646.1993.00729.x

    Article  Google Scholar 

  • Jassby AD, Platt T (1976) Mathematical formulation of the relationship photosynthesis and light for phytoplankton. Limnol Oceanogr 21:540–547. doi:10.4319/lo.1976.21.4.0540

    Article  CAS  Google Scholar 

  • Jones CT, Craig SE, Barnett AB et al (2014) Curvature in models of the photosynthesis-irradiance response. J Phycol. doi:10.1111/jpy.12164

    Google Scholar 

  • Karsten U, Wiencke C, Kirst GO (1991a) The effect of salinity changes upon physiology of eulittoral green macroalgae from Antarctica and Southern Chile. I. Cell viability, growth, photosynthesis and dark respiration. J Plant Physiol 138:667–673

    Article  Google Scholar 

  • Karsten U, Wiencke C, Kirst GO (1991b) The effect of salinity changes upon physiology of eulittoral green macroalgae from Antarctica and Southern Chile II. Inorganic ions and organic compounds. J Exp Bot 42:1533–1539

    Article  CAS  Google Scholar 

  • Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge. doi:10.1017/CBO9780511623370

    Book  Google Scholar 

  • Kirst GO, Wiencke C (1995) Ecophysiology of Polar algae. J Phycol 31:181–199. doi:10.1111/j.0022-3646.1995.00181.x

    Article  Google Scholar 

  • Klöser H, Quartino ML, Wiencke C (1996) Distribution of macroalgae and macroalgal communities in gradients of physical conditions in Potter Cove, King George Island, Antarctica. Hydrobiol 333:1–17. doi:10.1007/BF00020959

    Article  Google Scholar 

  • Kortsch S, Primicerio R, Beuchel F et al (2012) Climate-driven regime shifts in Arctic marine benthos. Proc Natl Acad Sci USA 109:14052–14057. doi:10.1073/pnas.1207509109

    Article  PubMed  PubMed Central  Google Scholar 

  • Krause-Jensen D, Marba N, Olesen B et al (2012) Seasonal sea ice cover as principal driver of spatial and temporal variation in depth extension and annual production of kelp in Greenland. Global Change Biol. doi:10.1111/j.1365-2486.2012.02765.x

    Google Scholar 

  • Kühl M, Glud R, Borum J et al (2001) Photosynthetic performance of surface-associated algae below sea ice as measured with a pulse-amplitude-modulated (PAM) fluorometer and O2 microsensors. Mar Ecol Prog Ser 223:1–14. doi:10.3354/meps223001

    Article  Google Scholar 

  • Long MH, Rheuban JE, Berg P, Zieman JC (2012) A comparison and correction of light intensity loggers to photosynthetically active radiation sensors. Limnol Oceanogr Methods 10:416–424. doi:10.4319/lom.2012.10.416

    Article  Google Scholar 

  • Lüning K (1990) Seaweeds-their environment, biogeography and ecophysiology. Wiley, NewYork, p 527

    Google Scholar 

  • Markager S, Sand-Jensen K (1992) Light requirements and depth zonation of marine macroalgae. Mar Ecol Prog Ser 88:83–92. doi:10.3354/meps088083

    Article  Google Scholar 

  • Matta JL, Chapman DJ (1991) Photosynthetic responses and daily carbon balance of Colpomenia peregrina: seasonal variations and differences between Intertidal and subtidal populations. Mar Biol 108:303–313. doi:10.1007/BF01344345

    Article  Google Scholar 

  • Miller KA, Pearse JS (1991) Ecological studies of seaweeds in McMurdo Sound, Antarctica. Am Zool 31:35–48. doi:10.1093/icb/31.1.35

    Article  Google Scholar 

  • Monien P, Schnetger B, Brumsack HJ et al (2011) A geochemical record of late Holocene palaeoenvironmental changes at King George Island (maritime Antarctica). Antarct Sci 23:255–267. doi:10.1017/S095410201100006X

  • Muscatine L (1980) Productivity of zooxanthellae. In: Falkowski PG (ed) Primary productivity in the sea. Plenum Press, New York, pp 403–410. doi:10.1007/978-1-4899-0762-2_14

    Google Scholar 

  • Nelson S, Siegrist AW (1987) Comparison of mathematical expressions describing light-saturation curves for photosynthesis by tropical marine macroalgae. Bull Mar Sci 41:617–622

    Google Scholar 

  • Pritchard DW, Hurd CL, Beardall J et al (2013) Survival in low light: photosynthesis and growth of a red alga in relation to measured in situ irradiance. J Phycol 49:867–879. doi: 10.1111/jpy.12093

  • Quartino ML, Boraso de Zaixso AL (2008) Summer macroalgal biomass in Potter Cove, South Shetland Islands, Antarctica: its production and flux to the ecosystem. Polar Biol 31:281–294

    Article  Google Scholar 

  • Quartino ML, Deregibus D, Campana GL et al (2013) Evidence of macroalgal colonization on newly ice-free areas following glacial retreat in Potter Cove (South Shetland Islands), Antarctica. PLoS One 8:e58223. doi:10.1371/journal.pone.0058223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rückamp M, Braun M, Suckro S, Blindow N (2011) Observed glacial changes on the King George Island ice cap, Antarctica, in the last decade. Global Planet Change 79:99–109. doi:10.1016/j.gloplacha.2011.06.009

    Article  Google Scholar 

  • Runcie JW, Riddle MJ (2006) Photosynthesis of marine macroalgae in ice-covered and ice-free environments in East Antarctica. Eur J Phycol 41:223–233. doi:10.1080/09670260600645824

    Article  CAS  Google Scholar 

  • Saba VS, Friedrichs MAM, Carr ME et al (2010) Challenges of modeling depth-integrated marine primary productivity over multiple decades: a case study at BATS and HOT. Global Biogeochem Cycle 24:GB3020. doi:10.1029/2009GB003655

  • Schloss IR, Abele D, Moreau S et al (2012) Response of phytoplankton dynamics to 19 year (1991–2009) climate trends in Potter Cove (Antarctica). J Mar Syst 92:53–66. doi:10.1016/j.jmarsys.2011.10.006

    Article  Google Scholar 

  • Schloss IR, Wasilowska A, Dumont D et al (2014) On the phytoplankton bloom in coastal waters of southern King George Island (Antarctica) in January 2010: An exceptional feature? Limnol Oceanogr 59:195–210. doi:10.1594/PANGAEA.754676

    Article  CAS  Google Scholar 

  • Schofield O, Ducklow HW, Martinson DG et al (2010) How do polar marine ecosystems respond to rapid climate change? Science 328:1520–1523. doi:10.1126/science.1185779

    Article  PubMed  CAS  Google Scholar 

  • Schwarz AM, Hawes I, Andrew N et al (2003) Macroalgal photosynthesis near the southern global limit for growth; Cape Evans, Ross Sea, Antarctica. Polar Biol 26:789–799. doi:10.1007/s00300-003-0556-2

    Article  Google Scholar 

  • Smith EL (1936) Photosynthesis in relation to light and carbon dioxide. Proc Nat Acad Sci 22:504–511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Southwood TRE, Henderson PA (2000) Ecological methods, 3rd edn. Blackwell, Oxford

    Google Scholar 

  • Spurkland T, Iken K (2011) Salinity and irradiance effects on growth and maximum photosynthetic quantum yield in subarctic Saccharina latissima (Laminariales, Laminariaceae). Bot Mar 54:355–365. doi:10.1515/BOT.2011.042

    Article  CAS  Google Scholar 

  • Steele J (1962) Environmental control of photosynthesis in the sea. Limnol Oceanogr 7:137–150. doi:10.4319/lo.1962.7.2.0137

    Article  Google Scholar 

  • Torre L, Servetto N, Eöry ML et al (2012) Respiratory responses of three Antarctic ascidians and a sea pen to increased sediment concentrations. Polar Biol 35:1743–1748. doi:10.1007/s00300-012-1208-1

    Article  Google Scholar 

  • Turner J, Colwell SR, Marshall GJ et al (2005) Antarctic climate change during the last 50 years. Int J Climatol 25:279–294. doi:10.1002/joc.1130

    Article  Google Scholar 

  • Turner J, Bindschadler RA, Convey P et al (2009) Antarctic climate change and the environment. SCAR, Cambridge, pp 526

  • Webb WL, Newton M, Starr D (1974) Carbon dioxide exchange of Alnusrubra: a mathematical model. Oecologia 17:281–291. doi:10.1007/BF00345747

    Article  Google Scholar 

  • Weykam G, Gómez I, Wiencke C et al (1996) Photosynthetic characteristics and C: N ratios of macroalgae from King George Island (Antarctica). J Exp Mar Biol Ecol 204:1–22. doi:10.1016/0022-0981(96)02576-2

    Article  Google Scholar 

  • Wiencke C (1990a) Seasonality of brown macroalgae from Antarctica—a long-term culture study under fluctuating Antarctic daylengths. Polar Biol 10:589–600. doi:10.1007/BF00239370

    Article  Google Scholar 

  • Wiencke C (1990b) Seasonality of red and green macroalgae from Antarctica—a long-term culture study under fluctuating Antarctic daylengths. Polar Biol 10:601–607. doi:10.1007/BF00239371

    Article  Google Scholar 

  • Wiencke C, Amsler CD (2012) Seaweeds and their communities in polar regions. In: Wiencke C, Bischof K (eds) Seaweed biology, novel insights into ecophysiology, ecology and utilization Ecological Studies 219. Springer, Heidelberg, pp 265–292. doi:10.1007/978-3-642-28451-9

    Google Scholar 

  • Wiencke C, Gómez I, Dunton K (2011) Phenology and seasonal physiological performance of polar seaweeds. In: Wiencke C (ed) Biology of Polar Benthic Algae. De Gruyter, Berlin, pp 181–194. doi:10.1007/978-1-4020-6285-8_13

    Google Scholar 

  • Worm B, Barbier EB, Beaumont N et al (2006) Impacts of biodiversity loss on ocean ecosystem services. Science 314:787–790. doi:10.1126/science.1132294

    Article  PubMed  CAS  Google Scholar 

  • Zacher K, Rautenberger R, Hanelt D et al (2009) The abiotic environment of polar marine benthic algae. Bot Mar 52:483–490. doi:10.1515/BOT.2009.082

    Article  Google Scholar 

  • Zar JH (1996) Biostatistical analysis, 3rd edn. Prentice Hall, New Jersey

    Google Scholar 

Download references

Acknowledgments

The work has been performed at Dallmann Laboratory, annex to Carlini (formerly Jubany) Station, within the framework of the scientific collaboration existing between Instituto Antártico Argentino/Dirección Nacional del Antártico and Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research. We thank the Instituto Antártico Argentino-Dirección Nacional del Antártico. We are especially grateful to the scientific, logistic and diving groups of Carlini Station-Dallmann Laboratory for their technical assistance during the Antarctic expeditions. In addition, we thank J. Robert Waaland and Thomas Mumford for their comments which helped to improve the manuscript. We gratefully acknowledge financial support by the Alfred Wegener Institute for Polar and Marine Research, Germany, DAAD, MINCYT-BMBF. The research was also supported by Grants from DNA-IAA (PICTA 7/2008-2011) and ANPCyT-DNA (PICTO 0116/2012-2015). The present manuscript also presents an outcome of the EU project IMCONet (FP7 IRSES, Action No. 319718).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Deregibus.

Additional information

This article is an invited contribution on Life in Antarctica: Boundaries and Gradients in a Changing Environment as the main theme of the XIth SCAR Biology Symposium. J.-M. Gili and R. Zapata Guardiola (Guest Editors).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deregibus, D., Quartino, M.L., Campana, G.L. et al. Photosynthetic light requirements and vertical distribution of macroalgae in newly ice-free areas in Potter Cove, South Shetland Islands, Antarctica. Polar Biol 39, 153–166 (2016). https://doi.org/10.1007/s00300-015-1679-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-015-1679-y

Keywords

Navigation