Skip to main content
Log in

Multiple-antibiotic-resistant bacteria from the maritime Antarctic

Polar Biology Aims and scope Submit manuscript

Abstract

The existence of multiple-antibiotic-resistant strains of environmental bacteria is commonly linked to human activities. However, multiple-antibiotic-resistant strains of bacteria are also widely found in the Antarctic that has limited human activity. This study was conducted to examine the prevalence of antibiotic-resistant strains among Antarctic bacteria. Forty-five bacterial strains from Estrellas lake of King George Island and Crater lake of Deception Island, Antarctic, were exposed to 30 different antibiotics. Forty out of the 45 bacterial strains were affiliated to 12 genera, Aeromicrobium, Arthrobacter, Bacillus, Brevundimonas, Cryobacterium, Dyadobacter, Flavobacterium, Methylibium, Pedobacter, Pseudomonas, Rhodococcus, and Sphingomonas. Among the bacteria, 43 strains were resistant to at least three antibiotics, and 26 strains were resistant to 10 or more different antibiotics. Pseudomonas spp. and four unknown Microbacteriaceae bacteria were found to be resistant to majority of the antibiotics tested. Two bacteria, each from Estrellas and Crater lakes, were sensitive to all the antibiotics tested. These results indicated that Antarctic bacteria are probably the reservoirs for antibiotic resistance genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Aislabie JM, Chhour K, Saul DJ, Miyauchi S, Ayton J, Paetzold RF, Balks MR (2006) Dominant bacterial groups in soils of Marble Point and Wright Valley, Victoria Land, Antarctica. Soil Biol Biochem 38:3041–3056

    Article  CAS  Google Scholar 

  • Alam SI, Singh L (2002) Proteolytic heterotrophic bacteria of cyanobacterial assemblage from Schirmacher Oasis, Antarctica, capable of growing under extreme conditions. Curr Sci India 83:1000–1004

    Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baquero F, Blazquez J (1997) Evolution of antibiotic resistance. Trends Ecol Evol 12:482–487

    Article  CAS  PubMed  Google Scholar 

  • Beaber JW, Hochhut B, Waldor MK (2004) SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 427:72–74

    Article  CAS  PubMed  Google Scholar 

  • Bell TH, Callender KL, Whyte LG, Greer CW (2013) Microbial competition in polar soils: a review of an understudied but potentially important control on productivity. Biology 2:533–554

    Article  PubMed Central  PubMed  Google Scholar 

  • Bennett PM (2008) Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br J Pharmacol 153:347–357

    Article  Google Scholar 

  • Bonnedahl J, Olsen B, Waldenstrom J, Broman T, Jalava J, Huovinen P, Osterblad M (2008) Antibiotic susceptibility of faecal bacteria in Antarctic penguins. Polar Biol 31:759–763

    Article  Google Scholar 

  • Cole JR, Chai B, Farris RJ, Wang Q, Kulam-Syed-Mohideen AS, McGarrell DM, Bandela AM, Cardenas E, Garrity GM, Tiedje JM (2007) The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res 35:169–172

    Article  Google Scholar 

  • D’Costa VM, Griffiths E, Wright GD (2007) Expanding the soil antibiotic resistome: exploring environmental diversity. Curr Opin Microbiol 10:481–489

    Article  PubMed  Google Scholar 

  • De Souza M, Nair S, Bharathi PAL, Chandramohan D (2006) Metal and antibiotic-resistance in psychrotrophic bacteria from Antarctic Marine waters. Ecotoxicology 15:379–384

    Article  PubMed  Google Scholar 

  • Dib J, Motok J, Zenoff VF, Ordonez O, Farias ME (2008) Occurrence of resistance to antibiotics, UV-B, and arsenic in bacteria isolated from extreme environments in high-altitude (above 4400 m) Andean Wetlands. Curr Microbiol 56:510–517

    Article  CAS  PubMed  Google Scholar 

  • Foong CP, Wong CMVL, Gonzales M (2010) Metagenomic analyses of the dominant bacterial community in the Fildes Peninsula, King George Island (South Shetland Islands). Polar Sci 4:263–273

    Article  Google Scholar 

  • Hardy DJ, Hensey DM, Beyer JM, Vojtko C, McDonald EJ, Fernandes PB (1988) Comparative in vitro activities of new 14-, 15-, and 16-membered macrolides. Antimicrob Agents Chemother 32:1710–1719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kobori H, Sullivan CW, Shizuya H (1984) Bacterial plasmids in Antarctic natural microbial assemblage. Appl Environ Microbiol 48:515–518

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lambert T, Ploy MC, Denis F, Courvalin P (1999) Characterization of the chromosomal aac(6′)-Iz gene of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 43:2366–2371

    CAS  PubMed Central  PubMed  Google Scholar 

  • Levy SB, Marshall B (2004) Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 10:S122–S129

    Article  CAS  PubMed  Google Scholar 

  • Li XZ, Livermore DM, Nikaido H (1994) Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: resistance to tetracycline, chloramphenicol, and norfloxacin. Antimicrob Agents Chemother 38:1732–1741

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lo Giudice A, Brilli M, Bruni V, De Domenico M, Fani R, Michaud L (2007) Bacterium–bacterium inhibitory interactions among psychrotrophic bacteria isolated from Antarctic seawater (Terra Nova Bay, Ross Sea). FEMS Microbiol Ecol 60:383–396

    Article  CAS  PubMed  Google Scholar 

  • Martinez JL (2008) Antibiotics and antibiotic resistance genes in natural environment. Science 321:365–367

    Article  CAS  PubMed  Google Scholar 

  • Medeiros AA (1997) Evolution and dissemination of β-lactam antibiotics. Clin Infect Dis 24:S19–S45

    Article  CAS  PubMed  Google Scholar 

  • Messi P, Guerrieri E, Bondi M (2005) Antibiotic resistance and antibacterial activity in heterotrophic bacteria of mineral water origin. Sci Total Environ 346:213–219

    Article  CAS  PubMed  Google Scholar 

  • Michaud L, Di Cello F, Brilli M, Fani R, Lo Giudice A, Bruni V (2004) Biodiversity of cultivable psychrotrophic marine bacteria isolated from Terra Nova Bay (Ross Sea, Antarctica). FEMS Microbiol Lett 230:63–71

    Article  CAS  PubMed  Google Scholar 

  • Mindlin SZ, Soina VS, Petrova MA, Gorlenko ZM (2008) Isolation of antibiotic resistance bacterial strains from Eastern Siberia permafrost sediments. Russ J Genet 44:27–34

    Article  CAS  Google Scholar 

  • Okamoto K, Gotoh N, Nishino T (2001) Pseudomonas aeruginosa reveals high intrinsic resistance to penem antibiotics: penem resistance mechanisms and their interplay. Antimicrob Agents Chemother 45:1964–1971

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peeters K, Verleyen E, Hodgson DA, Convey P, Ertz D, Vyverman W, Willems A (2012) Heterotrophic bacterial diversity in aquatic microbial mat communities from Antarctica. Polar Biol 35:543–554

    Article  Google Scholar 

  • Poole K, Krebes K, McNally C, Neshat S (1993) Multiple-antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. J Bacteriol 175:7363–7372

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reddy GSN, Matsumoto GI, Schumann P, Stackebrandt E, Shivaji S (2004) Psychrophilic pseudomonads from Antarctica: Pseudomonas antarctica sp. nov., Pseudomonas meridiana sp. nov. and Pseudomonas proteolytica sp. nov. Int J Syst Evol Microbiol 54:713–719

    Article  CAS  PubMed  Google Scholar 

  • Riesenfeld CS, Goodman RM, Handelsman J (2004) Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ Microbiol 6:981–989

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Speer BS, Shoemaker NB, Salyers AA (1992) Bacterial resistance to tetracycline: mechanisms, transfer and clinical significance. Clin Microbiol Rev 5:387–399

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci 101:11030–11035

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Teo JKC, Wong CMVL (2014) Analyses of soil bacterial diversity of the Schirmacher Oasis, Antarctica. Polar Biol 37:631–640

    Article  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van Trappen S, Vandecandelaere I, Mergaert J, Swings J (2004) Flavobacterium degerlachei sp. nov., Flavobacterium frigoris sp. nov. and Flavobacterium micromati sp. nov., novel psychrophilic bacteria isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 54:85–92

    Article  PubMed  Google Scholar 

  • Wolfson JS, Hooper DC (1985) The fluoroquinolones: structures, mechanisms of action and resistance, and spectra of activity in vitro. Antimicrob Agents Chemother 28:581–586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wong CMVL, Tam HK, Alias SA, González M, Rocha GG, Yévenes MD (2011) Pseudomonas and Pedobacter isolates from King George Island (Antarctica) inhibited the growth of food-borne pathogens. Pol Polar Res 32:3–14

    Google Scholar 

  • Wynn-Williams DD (1996) Antarctic microbial diversity: the basis of polar ecosystem processes. Biodivers Conserv 5:1271–1293

    Article  Google Scholar 

  • Yao JDC, Moellering RC Jr (2004) Antibacterial Agents. In: Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH (eds) Manual of clinical microbiology. American Society for Microbiology, Washington, DC, pp 1474–1504

    Google Scholar 

  • Zhang XF, Yao TD, Tian LD, Xu SJ, An LZ (2008) Phylogenetic and physiological diversity of bacteria isolated from Puruogangri ice core. Microb Ecol 55:476–488

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Bruns MA, Tiedje JM, Wu LY, Marsh TL, Neil RV, Palumbol AV, Teidje JM (2002) Spatial and resource factors influencing high microbial diversity in soil. Appl Environ Microbiol 68:326–334

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Malaysian Antarctic Research Programme (MARP), Academy of Sciences, Malaysia (ASM); Ministry of Science, Technology and Innovation (MOSTI), Malaysia; and Instituto Antártico Chileno (INACH), Chile. The authors would like to thank personnel at INACH and Biociencia Fundacion Cientifica Y Cultural, Ñuñoa, Santiago, Chile especially José Retamales, Marcelo Leppe, Paulina Julio Rocamora, Verónica Vallejos, Cristian Rodrigo, Patricio Barraza and Jenny Blamey for their advise and logistic supports. We would also like to thank Jacqueline Yong for reading and amending the final draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemente Michael Vui Ling Wong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tam, H.K., Wong, C.M.V.L., Yong, S.T. et al. Multiple-antibiotic-resistant bacteria from the maritime Antarctic. Polar Biol 38, 1129–1141 (2015). https://doi.org/10.1007/s00300-015-1671-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-015-1671-6

Keywords

Navigation