Habitat-specific effects of climate change on a low-mobility Arctic spider species

Abstract

Terrestrial ecosystems are heterogeneous habitat mosaics of varying vegetation types that are differentially affected by climate change. Arctic plant communities, for example, are changing faster in moist habitats than in dry habitats and abiotic changes like snowmelt vary locally among habitats. Such differences between habitats may influence the effects of climate changes on animals and this could be especially true in low-mobility species. Suitable model systems to test this idea, however, are rare. We examined how proxies of reproductive success (body size, juvenile/female ratios) and sex ratios have changed in low-mobility crab spiders collected systematically over a 17-year period (1996–2012) from two distinct habitats (mesic and arid dwarf shrub heath) at Zackenberg in northeast Greenland. We identified all adults in the collection to confirm that they represented just one species (Xysticus deichmanni Sørensen) based on morphology. This provided a unique opportunity to measure recruitment potential because we could assume that all juvenile crab spiders belonged to that species. We determined sex, stage, and size of all specimens (n = 2,115). Body size variation was significantly related to the timing of snowmelt and differed significantly between the sexes and habitats with the spiders in the mesic habitat showing a stronger temporal response to later snowmelt. Juvenile/female ratios also differed significantly between habitats; as did the overall abundance of individuals. We found significant main effects of snowmelt and habitat on sex ratio with the proportion of females decreasing significantly in response to later snowmelt only in the mesic sites. Effects of climate change may be masked by habitat differences and have implications for future range changes of species at both small and large spatial extents. We recommend that local habitat differences are included in analyses of species responses to climate change.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. ACIA (2005) Arctic climate impact assessment: impacts of a warming Arctic. Cambridge University Press, Cambridge

    Google Scholar 

  2. Benton MJ, Uetz GW (1986) Variation in life-history characteristics over a clinal gradient in three populations of a communal orb-weaving spider. Oecologia 68:395–399

    Article  Google Scholar 

  3. Bourne EC, Bocedi G, Travis JMJ, Pakeman RJ, Brooker RW, Schiffers K (2014) Between migration load and evolutionary rescue: dispersal, adaptation and the response of spatially structured population to environmental change. Proc R Soc B 281:20132795. doi:10.1098/rspb.2013.2795

    Article  PubMed Central  PubMed  Google Scholar 

  4. Bowden JJ, Buddle CM (2010) Determinants of ground-dwelling spider assemblages at a regional scale in the Yukon Terrritory, Canada. Écoscience 17:287–297. doi:10.2980/17-3-3308

    Article  Google Scholar 

  5. Bowden JJ, Buddle CM (2012) Life history of tundra-dwelling wolf spiders (Araneae: Lycosidae) from the Yukon Territory, Canada. Can J Zool 90:714–721. doi:10.1139/z2012-038

    Article  Google Scholar 

  6. Bowden JJ, Høye TT, Buddle CM (2013) Fecundity and sexual size dimorphism of wolf spiders (Araneae: Lycosidae) along an elevational gradient in the Arctic. Polar Biol 36:831–836. doi:10.1007/s00300-013-1308-6

    Article  Google Scholar 

  7. Callaghan TV, Björn LO, Chernov Y, Chapin T, Christensen TR, Huntley B, Ims RA, Johansson M, Jolly D, Jonasson S, Matveyeva N, Panikov N, Oechel W, Shaver G, Elster J, Henttonen H, Laine K, Taulavuori E, Zöckler C (2004) Biodiversity, distributions and adaptations of Arctic species in the context of environmental change. AMBIO 33:404–417. doi:10.1579/0044-7447-33.7.404

    PubMed  Google Scholar 

  8. Chown SL, Gaston KJ (2010) Body size variation in insects: a macroecological perspective. Biol Rev 85:139–169. doi:10.1111/j.1469-185X.2009.00097.x

    Article  PubMed  Google Scholar 

  9. Clark JA, Robinson RA, Clark NA, Atkinson PW (2004) Using the proportion of juvenile waders in catches to measure recruitment. Wader Study Group Bull 104:51–55

    Google Scholar 

  10. DeVito J, Meik JM, Gerson MM, Formanowicz DR Jr (2004) Physiological tolerances of three sympatric riparian wolf spiders (Araneae: Lycosidae) correspond with microhabitat distributions. Can J Zool 82:1119–1125. doi:10.1139/z04-090

    Article  Google Scholar 

  11. Dondale CJ, Redner JH (1978) the insects and Arachnids of Canada: part 5, the crab spiders of Canada and Alaska. Supply and Services Canada, Hull

    Google Scholar 

  12. Elmendorf SC, Henry GHR, Hollister RD, Björk RG, Boulager-Lapointe N, Cooper EJ, Cornelissen JHC, Day TA, Dorrepaal E, Elumeeva TG, Gill M, Gould WA, Harte J, Hik DS, Hofgaard A, Johnson DR, Johnstone JF, Jónsdóttir IS, Jorgenson JC, Klanderud K, Klein JA, Koh S, Kudo G, Lara M, Lévesque E et al (2012) Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat Clim Change 2:453–457. doi:10.1038/nclimate1465

    Article  Google Scholar 

  13. Higgins LE, Rankin MA (2001) Mortality risk of rapid growth in the spider Nephila clavipes. Funct Ecol 15:24–28. doi:10.1046/j.1365-2435.2001.00491.x

    Article  Google Scholar 

  14. Hodkinson ID, Coulson SJ (2004) Are high Arctic terrestrial food chains really that simple? The bear Island food web revisited. Oikos 106:427–431. doi:10.1111/j.0030-1299.2004.13091.x

    Article  Google Scholar 

  15. Høye TT, Forchhammer MC (2008) Phenology of high-arctic arthropods: effects of climate on spatial, seasonal and inter-annual variation. Adv Ecol Res 40:299–324. doi:10.1016/S0065-2504(07)00013-X

    Article  Google Scholar 

  16. Høye TT, Hammel JU (2010) Climate change and altitudinal variation in sexual size dimorphism of arctic wolf spiders. Clim Res 41:259–265. doi:10.3354/cr00855

    Article  Google Scholar 

  17. Høye TT, Post E, Meltofte H, Schmidt NM, Forchhammer MC (2007a) Rapid advancement of spring in the high Arctic. Curr Biol 17:R449–R451. doi:10.1016/j.cub.2007.04.047

    Article  PubMed  Google Scholar 

  18. Høye TT, Ellerbjerg SM, Philipp M (2007b) The impact of climate on flowering in the high Arctic the case of Dryas in a hybrid zone. Arct Antarct Alp Res 39:412–421. doi:10.1657/1523-0430(06-018)[HOYE]2.0.CO;2

  19. Høye TT, Hammel JU, Fuchs T, Toft S (2009) Climate change and sexual size dimorphism in an Arctic spider. Biol Lett 5:542–544. doi:10.1098/rsbl.2009.0169

    Article  PubMed Central  PubMed  Google Scholar 

  20. Høye TT, Post E, Schmidt NM, Trøjelsgaard K, Forchhammer MC (2013) Shorter flowering seasons and declining abundance of flower visitors in a warmer Arctic. Nat Clim Change 3:759–763. doi:10.1038/nclimate1909

    Article  Google Scholar 

  21. Jakob EM, Marshall SD, Uetz GW (1996) Estimating fitness: a comparison of body condition indices. Oikos 77:61–67

    Article  Google Scholar 

  22. Kudo G, Hirao AS (2006) Habitat-specific responses in the flowering phenology and seed set of alpine plants to climate variation: implications for global-change impacts. Popul Ecol 48:49–58. doi:10.1007/s10144-005-0242-z

    Article  Google Scholar 

  23. Larrivée M, Buddle CM (2011) Ballooning propensity of canopy and understorey spiders in a mature temperate hardwood forest. Ecol Entomol 36:144–151. doi:10.1111/j.1365-2311.2010.01255.x

    Article  Google Scholar 

  24. Leech RE (1996) The spiders (Araneidae) of Hazen Camp 81°49′ N, 71° 18′ W. Quaest Entomol 2:153–212

    Google Scholar 

  25. Martyniuk J, Wise DH (1985) Stage-biased overwintering survival of the filmy dome spider (Araneae, Linyphiidae). J Arachnol 13:321–329

    Google Scholar 

  26. Marusik YM, Böcher J, Koponen S (2006) The collection of Greenland spiders (Aranei) kept in the Zoological Museum, University of Copenhagen. Arthropoda Sel 15:59–80

  27. Miller-Rushing AJ, Høye TT, Inouye DW, Post E (2010) The effects of phenological mismatches on demography. Proc R Soc B 365:3177–3186. doi:10.1098/rstb.2010.0148

    Google Scholar 

  28. Morse DH (1992) Dispersal of the spiderlings of Xysticus emertoni (Araneae, Thomisidae), a litter-dwelling crab spider. J Arachnol 20:217–221

    Google Scholar 

  29. Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T, Blok D, Tape KD, Macias-Fauria M, Sass-Klaassen U, Lévesque E, Boudreau S, Ropars P, Hermanutz L, Trant A, Collier LS, Weijers S, Rozema J, Rayback SA, Schmidt NM, Schaepman-Strub G, Wipf S, Rixen C, Ménard CB, Venn S, Goetz S et al (2011) Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ Res Lett 6:045509. doi:10.1088/1748-9326/6/4/045509

    Article  Google Scholar 

  30. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D’Amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51:933–938. doi:10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2

  31. Post E, Forchhammer M, Bret-Harte MS, Callaghan TV, Christensen TR, Elberling B, Fox AD, Gilg O, Hik DS, Høye TT, Ims RA, Jeppesen E, Klein DR, Madsen J, McGuire AD, Rysgaard S, Schindler DE, Stirling I, Tamstorf MP, Tyler NJC, van der Wal R, Welker J, Wookey PA, Schmidt NM, Aastrup P (2009) Ecological dynamics across the Arctic associated with recent climate change. Science 325:1355–1358

    Article  CAS  PubMed  Google Scholar 

  32. Puzin C, Acou A, Bonte D, Pétillon J (2011) Comparison of reproductive traits between two salt-marsh wolf spiders (Araneae, Lycosidae) under different habitat suitability conditions. Anim Biol 61:127–138. doi:10.1163/157075511X566461

    Article  Google Scholar 

  33. R Development Core Team (2013) R: a language and environment for statistical computing, version 3.0.1. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  34. Roslin T, Wirta H, Hopkins T, Hardwick B, Várkonyi G (2013) Indirect interactions in the high Arctic. PLoS One e67367. doi:10.1371/journal.pone.0067367

  35. Rühlund KM, Paterson AM, Keller W, Michelutti N, Smol JP (2013) Global warming triggers the loss of a key Arctic refugium. Proc R Soc B 280:20131887. doi:10.1098/rspb.2013.1887

    Article  Google Scholar 

  36. Schmidt NM, Kristensen DK, Michelsen A, Bay C (2012a) High Arctic plant community responses to a decade of ambient warming. Biodiversity 13:191–199. doi:10.1080/14888386.2012.712093

    Article  Google Scholar 

  37. Schmidt NM, Hansen LH, Hansen J, Berg TB, Meltofte H (2012b) BioBasis manual: conceptual design and sampling procedures of the biological monitoring programme within Zackenberg Basic. Aarhus University Press, Roskilde

    Google Scholar 

  38. Schmoller R (1970) Life histories of alpine tundra Arachnida in Colorado. Am Midl Nat 83:119–133

    Article  Google Scholar 

  39. Sigsgaard C, Mylius MR, Skov K (2014) GeoBasis Manual: Guidelines and sampling procedures for the geographical monitoring programme of Zackenberg Basic. Aarhus University Press, Roskilde

    Google Scholar 

  40. Stillwell RC, Blanckenhorn WU, Teder T, Davidowitz G, Fox CW (2010) Sex differences in phenotypic plasticity affect variation in sexual size dimorphism in insects: from physiology to evolution. Annu Rev Entomol 55:227–245. doi:10.1146/annurev-ento-112408-085500

    Article  CAS  PubMed  Google Scholar 

  41. Stow DA, Hope A, McGuire D, Verbyla D, Gamon J, Huemmrich F, Houston S, Racine C, Sturm M, Tape K, Hinzmon L, Yoshikawa K, Tweedie C, Noyle B, Silapaswan C, Douglas D, Griffith B, Jia G, Epstein H, Walker D, Daeshner S, Petersen A, Zhou L, Myneri R (2004) Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems. Remote Sens Environ 89:281–308. doi:10.1016/j.rse.2003.10.018

    Article  Google Scholar 

  42. Thomas CD (2000) Dispersal and extinction in fragmented landscapes. Biol Sci 267:139–145. doi:10.1098/rspb.2000.0978

    Article  CAS  Google Scholar 

  43. Thomas CD, Bodsworth EJ, Wilson RJ, Simmons AD, Davies ZG, Musche M, Conradt L (2001) Ecological and evolutionary processes at expanding range margins. 411:577–581. doi:10.1038/35079066

  44. Uhl G, Schmitt S, Schäfer MA, Blanckenhorn WU (2004) Food and sex-specific strategies in a spider. Evol Ecol Res 6:523–540

    Google Scholar 

  45. Walker DA, Raynolds MK, Daniëls FJA, Einarsson E, Elvebakk A, Gould WA, Katenin AE, Kholod SS, Markon CJ, Melnikov ES, Moskalenko NG, Talbot SS, Yurtsev BA, The other members of the CAVM Team (2005) The circumpolar Arctic vegetation map. J Veg Sci 16:267–282. doi:10.1111/j.1654-1103.2005.tb02365.x

    Article  Google Scholar 

  46. Warren MS, Hill JK, Thomas JA, Asher J, Fox R, Huntley B, Roy DB, Telfer MG, Jeffcoate S, Harding P, Jeffcoate G, Willis SG, Greatorex-Davies JN, Moss D, Thomas CD (2001) Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414:65–69. doi:10.1038/35102054

    Article  CAS  PubMed  Google Scholar 

  47. Wilson K, Hardy ICW (2002) Statistical analysis of sex ratios: an introduction. In: Hardy ICW (ed) Sex ratios: concepts and research methods. Cambridge University Press, Cambridge, pp 48–92

    Google Scholar 

  48. Wyant KA, Draney ML, Moore JC (2011) Epigeal spider (Araneae) communities in moist acidic and dry heath tundra at Toolik Lake, Alaska. Arct Antarct Alp Res 43:301–312. doi:10.1657/1938-4246-43.2.301

    Article  Google Scholar 

  49. Zhang W, Miller PA, Smith B, Wania R, Koenigk T, Döscher R (2013) Tundra shrubification and tree-line advance amplify arctic climate warming: results from and individual-based dynamic vegetation model. Environ Res Lett 8:034023. doi:10.1088/1748-9326/8/3/034023

    Article  Google Scholar 

  50. Zona D, Oechel WC, Kochendorfer J, Paw UKT, Salyuk AN, Olivas PC, Oberbauer SF, Lipson DA (2009) Methane fluxes during the initiation of a large-scale water table manipulation in the Alaskan Arctic tundra. Glob Biogeochem Cycles 23:GB2013. doi:10.1029/2009GB003487

    Article  Google Scholar 

Download references

Acknowledgments

Samples from Zackenberg, Northeast Greenland, were provided by BioBasis, the Department of Bioscience, Aarhus University, Denmark, and Natural History Museum Aarhus, Denmark. We would also like to acknowledge Climate Basis for access to environmental data.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joseph J. Bowden.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 220 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bowden, J.J., Hansen, R.R., Olsen, K. et al. Habitat-specific effects of climate change on a low-mobility Arctic spider species. Polar Biol 38, 559–568 (2015). https://doi.org/10.1007/s00300-014-1622-7

Download citation

Keywords

  • High Arctic
  • Arthropod
  • Zackenberg
  • Thomisidae
  • Mesic heath
  • Dry heath