Polar Biology

, Volume 38, Issue 4, pp 559–568 | Cite as

Habitat-specific effects of climate change on a low-mobility Arctic spider species

  • Joseph J. BowdenEmail author
  • Rikke R. Hansen
  • Kent Olsen
  • Toke T. Høye
Original Paper


Terrestrial ecosystems are heterogeneous habitat mosaics of varying vegetation types that are differentially affected by climate change. Arctic plant communities, for example, are changing faster in moist habitats than in dry habitats and abiotic changes like snowmelt vary locally among habitats. Such differences between habitats may influence the effects of climate changes on animals and this could be especially true in low-mobility species. Suitable model systems to test this idea, however, are rare. We examined how proxies of reproductive success (body size, juvenile/female ratios) and sex ratios have changed in low-mobility crab spiders collected systematically over a 17-year period (1996–2012) from two distinct habitats (mesic and arid dwarf shrub heath) at Zackenberg in northeast Greenland. We identified all adults in the collection to confirm that they represented just one species (Xysticus deichmanni Sørensen) based on morphology. This provided a unique opportunity to measure recruitment potential because we could assume that all juvenile crab spiders belonged to that species. We determined sex, stage, and size of all specimens (n = 2,115). Body size variation was significantly related to the timing of snowmelt and differed significantly between the sexes and habitats with the spiders in the mesic habitat showing a stronger temporal response to later snowmelt. Juvenile/female ratios also differed significantly between habitats; as did the overall abundance of individuals. We found significant main effects of snowmelt and habitat on sex ratio with the proportion of females decreasing significantly in response to later snowmelt only in the mesic sites. Effects of climate change may be masked by habitat differences and have implications for future range changes of species at both small and large spatial extents. We recommend that local habitat differences are included in analyses of species responses to climate change.


High Arctic Arthropod Zackenberg Thomisidae Mesic heath Dry heath 



Samples from Zackenberg, Northeast Greenland, were provided by BioBasis, the Department of Bioscience, Aarhus University, Denmark, and Natural History Museum Aarhus, Denmark. We would also like to acknowledge Climate Basis for access to environmental data.

Supplementary material

300_2014_1622_MOESM1_ESM.pdf (220 kb)
Supplementary material 1 (PDF 220 kb)


  1. ACIA (2005) Arctic climate impact assessment: impacts of a warming Arctic. Cambridge University Press, CambridgeGoogle Scholar
  2. Benton MJ, Uetz GW (1986) Variation in life-history characteristics over a clinal gradient in three populations of a communal orb-weaving spider. Oecologia 68:395–399CrossRefGoogle Scholar
  3. Bourne EC, Bocedi G, Travis JMJ, Pakeman RJ, Brooker RW, Schiffers K (2014) Between migration load and evolutionary rescue: dispersal, adaptation and the response of spatially structured population to environmental change. Proc R Soc B 281:20132795. doi: 10.1098/rspb.2013.2795 CrossRefPubMedCentralPubMedGoogle Scholar
  4. Bowden JJ, Buddle CM (2010) Determinants of ground-dwelling spider assemblages at a regional scale in the Yukon Terrritory, Canada. Écoscience 17:287–297. doi: 10.2980/17-3-3308 CrossRefGoogle Scholar
  5. Bowden JJ, Buddle CM (2012) Life history of tundra-dwelling wolf spiders (Araneae: Lycosidae) from the Yukon Territory, Canada. Can J Zool 90:714–721. doi: 10.1139/z2012-038 CrossRefGoogle Scholar
  6. Bowden JJ, Høye TT, Buddle CM (2013) Fecundity and sexual size dimorphism of wolf spiders (Araneae: Lycosidae) along an elevational gradient in the Arctic. Polar Biol 36:831–836. doi: 10.1007/s00300-013-1308-6 CrossRefGoogle Scholar
  7. Callaghan TV, Björn LO, Chernov Y, Chapin T, Christensen TR, Huntley B, Ims RA, Johansson M, Jolly D, Jonasson S, Matveyeva N, Panikov N, Oechel W, Shaver G, Elster J, Henttonen H, Laine K, Taulavuori E, Zöckler C (2004) Biodiversity, distributions and adaptations of Arctic species in the context of environmental change. AMBIO 33:404–417. doi: 10.1579/0044-7447-33.7.404 PubMedGoogle Scholar
  8. Chown SL, Gaston KJ (2010) Body size variation in insects: a macroecological perspective. Biol Rev 85:139–169. doi: 10.1111/j.1469-185X.2009.00097.x CrossRefPubMedGoogle Scholar
  9. Clark JA, Robinson RA, Clark NA, Atkinson PW (2004) Using the proportion of juvenile waders in catches to measure recruitment. Wader Study Group Bull 104:51–55Google Scholar
  10. DeVito J, Meik JM, Gerson MM, Formanowicz DR Jr (2004) Physiological tolerances of three sympatric riparian wolf spiders (Araneae: Lycosidae) correspond with microhabitat distributions. Can J Zool 82:1119–1125. doi: 10.1139/z04-090 CrossRefGoogle Scholar
  11. Dondale CJ, Redner JH (1978) the insects and Arachnids of Canada: part 5, the crab spiders of Canada and Alaska. Supply and Services Canada, HullGoogle Scholar
  12. Elmendorf SC, Henry GHR, Hollister RD, Björk RG, Boulager-Lapointe N, Cooper EJ, Cornelissen JHC, Day TA, Dorrepaal E, Elumeeva TG, Gill M, Gould WA, Harte J, Hik DS, Hofgaard A, Johnson DR, Johnstone JF, Jónsdóttir IS, Jorgenson JC, Klanderud K, Klein JA, Koh S, Kudo G, Lara M, Lévesque E et al (2012) Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat Clim Change 2:453–457. doi: 10.1038/nclimate1465 CrossRefGoogle Scholar
  13. Higgins LE, Rankin MA (2001) Mortality risk of rapid growth in the spider Nephila clavipes. Funct Ecol 15:24–28. doi: 10.1046/j.1365-2435.2001.00491.x CrossRefGoogle Scholar
  14. Hodkinson ID, Coulson SJ (2004) Are high Arctic terrestrial food chains really that simple? The bear Island food web revisited. Oikos 106:427–431. doi: 10.1111/j.0030-1299.2004.13091.x CrossRefGoogle Scholar
  15. Høye TT, Forchhammer MC (2008) Phenology of high-arctic arthropods: effects of climate on spatial, seasonal and inter-annual variation. Adv Ecol Res 40:299–324. doi: 10.1016/S0065-2504(07)00013-X CrossRefGoogle Scholar
  16. Høye TT, Hammel JU (2010) Climate change and altitudinal variation in sexual size dimorphism of arctic wolf spiders. Clim Res 41:259–265. doi: 10.3354/cr00855 CrossRefGoogle Scholar
  17. Høye TT, Post E, Meltofte H, Schmidt NM, Forchhammer MC (2007a) Rapid advancement of spring in the high Arctic. Curr Biol 17:R449–R451. doi: 10.1016/j.cub.2007.04.047 CrossRefPubMedGoogle Scholar
  18. Høye TT, Ellerbjerg SM, Philipp M (2007b) The impact of climate on flowering in the high Arctic the case of Dryas in a hybrid zone. Arct Antarct Alp Res 39:412–421. doi: 10.1657/1523-0430(06-018)[HOYE]2.0.CO;2
  19. Høye TT, Hammel JU, Fuchs T, Toft S (2009) Climate change and sexual size dimorphism in an Arctic spider. Biol Lett 5:542–544. doi: 10.1098/rsbl.2009.0169 CrossRefPubMedCentralPubMedGoogle Scholar
  20. Høye TT, Post E, Schmidt NM, Trøjelsgaard K, Forchhammer MC (2013) Shorter flowering seasons and declining abundance of flower visitors in a warmer Arctic. Nat Clim Change 3:759–763. doi: 10.1038/nclimate1909 CrossRefGoogle Scholar
  21. Jakob EM, Marshall SD, Uetz GW (1996) Estimating fitness: a comparison of body condition indices. Oikos 77:61–67CrossRefGoogle Scholar
  22. Kudo G, Hirao AS (2006) Habitat-specific responses in the flowering phenology and seed set of alpine plants to climate variation: implications for global-change impacts. Popul Ecol 48:49–58. doi: 10.1007/s10144-005-0242-z CrossRefGoogle Scholar
  23. Larrivée M, Buddle CM (2011) Ballooning propensity of canopy and understorey spiders in a mature temperate hardwood forest. Ecol Entomol 36:144–151. doi: 10.1111/j.1365-2311.2010.01255.x CrossRefGoogle Scholar
  24. Leech RE (1996) The spiders (Araneidae) of Hazen Camp 81°49′ N, 71° 18′ W. Quaest Entomol 2:153–212Google Scholar
  25. Martyniuk J, Wise DH (1985) Stage-biased overwintering survival of the filmy dome spider (Araneae, Linyphiidae). J Arachnol 13:321–329Google Scholar
  26. Marusik YM, Böcher J, Koponen S (2006) The collection of Greenland spiders (Aranei) kept in the Zoological Museum, University of Copenhagen. Arthropoda Sel 15:59–80Google Scholar
  27. Miller-Rushing AJ, Høye TT, Inouye DW, Post E (2010) The effects of phenological mismatches on demography. Proc R Soc B 365:3177–3186. doi: 10.1098/rstb.2010.0148 Google Scholar
  28. Morse DH (1992) Dispersal of the spiderlings of Xysticus emertoni (Araneae, Thomisidae), a litter-dwelling crab spider. J Arachnol 20:217–221Google Scholar
  29. Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T, Blok D, Tape KD, Macias-Fauria M, Sass-Klaassen U, Lévesque E, Boudreau S, Ropars P, Hermanutz L, Trant A, Collier LS, Weijers S, Rozema J, Rayback SA, Schmidt NM, Schaepman-Strub G, Wipf S, Rixen C, Ménard CB, Venn S, Goetz S et al (2011) Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ Res Lett 6:045509. doi: 10.1088/1748-9326/6/4/045509 CrossRefGoogle Scholar
  30. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D’Amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51:933–938. doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
  31. Post E, Forchhammer M, Bret-Harte MS, Callaghan TV, Christensen TR, Elberling B, Fox AD, Gilg O, Hik DS, Høye TT, Ims RA, Jeppesen E, Klein DR, Madsen J, McGuire AD, Rysgaard S, Schindler DE, Stirling I, Tamstorf MP, Tyler NJC, van der Wal R, Welker J, Wookey PA, Schmidt NM, Aastrup P (2009) Ecological dynamics across the Arctic associated with recent climate change. Science 325:1355–1358CrossRefPubMedGoogle Scholar
  32. Puzin C, Acou A, Bonte D, Pétillon J (2011) Comparison of reproductive traits between two salt-marsh wolf spiders (Araneae, Lycosidae) under different habitat suitability conditions. Anim Biol 61:127–138. doi: 10.1163/157075511X566461 CrossRefGoogle Scholar
  33. R Development Core Team (2013) R: a language and environment for statistical computing, version 3.0.1. R Foundation for Statistical Computing, ViennaGoogle Scholar
  34. Roslin T, Wirta H, Hopkins T, Hardwick B, Várkonyi G (2013) Indirect interactions in the high Arctic. PLoS One e67367. doi: 10.1371/journal.pone.0067367
  35. Rühlund KM, Paterson AM, Keller W, Michelutti N, Smol JP (2013) Global warming triggers the loss of a key Arctic refugium. Proc R Soc B 280:20131887. doi: 10.1098/rspb.2013.1887 CrossRefGoogle Scholar
  36. Schmidt NM, Kristensen DK, Michelsen A, Bay C (2012a) High Arctic plant community responses to a decade of ambient warming. Biodiversity 13:191–199. doi: 10.1080/14888386.2012.712093 CrossRefGoogle Scholar
  37. Schmidt NM, Hansen LH, Hansen J, Berg TB, Meltofte H (2012b) BioBasis manual: conceptual design and sampling procedures of the biological monitoring programme within Zackenberg Basic. Aarhus University Press, RoskildeGoogle Scholar
  38. Schmoller R (1970) Life histories of alpine tundra Arachnida in Colorado. Am Midl Nat 83:119–133CrossRefGoogle Scholar
  39. Sigsgaard C, Mylius MR, Skov K (2014) GeoBasis Manual: Guidelines and sampling procedures for the geographical monitoring programme of Zackenberg Basic. Aarhus University Press, RoskildeGoogle Scholar
  40. Stillwell RC, Blanckenhorn WU, Teder T, Davidowitz G, Fox CW (2010) Sex differences in phenotypic plasticity affect variation in sexual size dimorphism in insects: from physiology to evolution. Annu Rev Entomol 55:227–245. doi: 10.1146/annurev-ento-112408-085500 CrossRefPubMedGoogle Scholar
  41. Stow DA, Hope A, McGuire D, Verbyla D, Gamon J, Huemmrich F, Houston S, Racine C, Sturm M, Tape K, Hinzmon L, Yoshikawa K, Tweedie C, Noyle B, Silapaswan C, Douglas D, Griffith B, Jia G, Epstein H, Walker D, Daeshner S, Petersen A, Zhou L, Myneri R (2004) Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems. Remote Sens Environ 89:281–308. doi: 10.1016/j.rse.2003.10.018 CrossRefGoogle Scholar
  42. Thomas CD (2000) Dispersal and extinction in fragmented landscapes. Biol Sci 267:139–145. doi: 10.1098/rspb.2000.0978 CrossRefGoogle Scholar
  43. Thomas CD, Bodsworth EJ, Wilson RJ, Simmons AD, Davies ZG, Musche M, Conradt L (2001) Ecological and evolutionary processes at expanding range margins. 411:577–581. doi: 10.1038/35079066
  44. Uhl G, Schmitt S, Schäfer MA, Blanckenhorn WU (2004) Food and sex-specific strategies in a spider. Evol Ecol Res 6:523–540Google Scholar
  45. Walker DA, Raynolds MK, Daniëls FJA, Einarsson E, Elvebakk A, Gould WA, Katenin AE, Kholod SS, Markon CJ, Melnikov ES, Moskalenko NG, Talbot SS, Yurtsev BA, The other members of the CAVM Team (2005) The circumpolar Arctic vegetation map. J Veg Sci 16:267–282. doi: 10.1111/j.1654-1103.2005.tb02365.x CrossRefGoogle Scholar
  46. Warren MS, Hill JK, Thomas JA, Asher J, Fox R, Huntley B, Roy DB, Telfer MG, Jeffcoate S, Harding P, Jeffcoate G, Willis SG, Greatorex-Davies JN, Moss D, Thomas CD (2001) Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414:65–69. doi: 10.1038/35102054 CrossRefPubMedGoogle Scholar
  47. Wilson K, Hardy ICW (2002) Statistical analysis of sex ratios: an introduction. In: Hardy ICW (ed) Sex ratios: concepts and research methods. Cambridge University Press, Cambridge, pp 48–92CrossRefGoogle Scholar
  48. Wyant KA, Draney ML, Moore JC (2011) Epigeal spider (Araneae) communities in moist acidic and dry heath tundra at Toolik Lake, Alaska. Arct Antarct Alp Res 43:301–312. doi: 10.1657/1938-4246-43.2.301 CrossRefGoogle Scholar
  49. Zhang W, Miller PA, Smith B, Wania R, Koenigk T, Döscher R (2013) Tundra shrubification and tree-line advance amplify arctic climate warming: results from and individual-based dynamic vegetation model. Environ Res Lett 8:034023. doi: 10.1088/1748-9326/8/3/034023 CrossRefGoogle Scholar
  50. Zona D, Oechel WC, Kochendorfer J, Paw UKT, Salyuk AN, Olivas PC, Oberbauer SF, Lipson DA (2009) Methane fluxes during the initiation of a large-scale water table manipulation in the Alaskan Arctic tundra. Glob Biogeochem Cycles 23:GB2013. doi: 10.1029/2009GB003487 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Joseph J. Bowden
    • 1
    Email author
  • Rikke R. Hansen
    • 1
  • Kent Olsen
    • 2
  • Toke T. Høye
    • 1
    • 3
    • 4
  1. 1.Arctic Research CentreAarhus UniversityÅrhus CDenmark
  2. 2.Natural History Museum AarhusÅrhus CDenmark
  3. 3.Aarhus Institute of Advanced StudiesAarhus UniversityÅrhus CDenmark
  4. 4.Department of BioscienceKalø, Aarhus UniversityRøndeDenmark

Personalised recommendations