Advertisement

Polar Biology

, Volume 39, Issue 1, pp 57–64 | Cite as

Physiological differences between two overlapped breeding Antarctic penguins in a global change perspective

  • Verónica L. D’AmicoEmail author
  • Néstor Coria
  • María Gabriela Palacios
  • Andrés Barbosa
  • Marcelo Bertellotti
Original Paper

Abstract

Global change has affected the Antarctic Peninsula influencing the abundance of krill, one of the main preys of penguins. In areas where breeding penguin populations overlap, species with a more diverse diet have generally been less affected than krill-specialist species, which have shown population declines. Human activities can add to these changes, as penguins are sensitive to anthropic impacts such as contamination. Our objective was to assess whether selected physiological parameters of Adélie and Gentoo penguins reflect their contrasting population trends in a colony located at Punta Stranger (25 de Mayo Island/King George, South Shetland Islands) where they breed sympatrically. During 2012, we assessed the leukocyte profile, heterophil to lymphocyte ratio (H/L), erythrocytic nuclear abnormalities (ENAs), hematocrit, biochemical profile, and a measure of immune function (bacterial agglutination) in adults and chicks of both species. Higher values of ENAs, indicative of genotoxic damage caused by contaminants, are in accordance with a greater sensitivity to ongoing global changes by Adélie penguins. Levels of cholesterol and triglycerides strengthen this idea since individuals could be investing more resources in energy reserves to successfully cope with challenging environmental conditions during the breeding season. The remaining physiological parameters did not provide a clear picture. Furthermore, some results could be related to differences in diet. Gentoos show greater prey diversity than Adélie penguins, incorporating a richer parasite fauna, which could explain their higher heterophils and H/L. The physiological parameters measured here serve as baseline for a sustained monitoring of these rapidly changing populations. Further physiological variables, including stress hormone and indices of oxidative stress, remain to be assessed as potential indicators of population susceptibility to global change in this system.

Keywords

Antarctica Global warming Physiology Pygoscelis penguin 

Notes

Acknowledgments

We very much appreciated the hospitality and logistic support of the Argentinean Antarctic Base “Carlini (ex Jubany).” We thank J. Menucci for providing the maps and two anonymous reviewers for their suggestions that helped improve our manuscript. We are grateful for the logistic support and permits provided by the Instituto Antártico Argentino (IAA–DNA). AB was supported by the project CTM2011-24425. Permits to work at the site and handle penguins were given by Dirección Nacional del Antártico.

References

  1. Ainley D, Russell J, Jenouvrier S, Woehler E, O’B Lyver F, Fraser WR, Kooyman GL (2010) Antarctic penguin response to habitat change as Earth’s troposphere reaches 28C above preindustrial levels. Ecol Monogr 80:49–66CrossRefGoogle Scholar
  2. Alonso-Alvarez C, Ferrer M, Velando A (2002) The plasmatic index of body condition in Yellow-legged Gulls Larus cachinnans: a food-controlled experiment. Ibis 144:147–149CrossRefGoogle Scholar
  3. Atkinson A, Siegel V, Pakhomov E, Rothery P (2004) Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432:100–103PubMedCrossRefGoogle Scholar
  4. Atkinson A, Siegel V, Pakhomov E, Rothery P, Loeb V, Ross RM, Quentin LB, Schimidt K, Fretwell P, Murphy EJ, Tarling GA, Fleming AH (2008) Oceanic circumpolar habitats of Antarctic krill. Mar Ecol Prog Ser 362:1–23CrossRefGoogle Scholar
  5. Barbosa A, Merino S, Benzal J, Martinez J, Garcia-Fraile S (2007a) Geographic variation in immunoglobulin levels in pygocelid penguins. Polar Biol 30:219–225CrossRefGoogle Scholar
  6. Barbosa A, Merino S, Benzal J, Martinez J, Garcia-Fraile S (2007b) Population variability in heat shock proteins among three Antarctic penguin species. Polar Biol 30:1239–1244CrossRefGoogle Scholar
  7. Barbosa A, Benzal J, De León A, Moreno J (2012) Population decline of chinstrap penguins (Pygoscelis antarctica) on Deception Island, South Shetlands, Antarctica. Polar Biol 35:1453–1457CrossRefGoogle Scholar
  8. Barbosa A, Eva De Mas E, Benzal J, Diaz JI, Motas M, Jerez S, Pertierra L, Benayas J, Justel A, Lauzurica P, Garcia-Peña FJ, Serrano T (2013) Pollution and physiological variability in gentoo penguins at two rookeries with different levels of human visitation. Antarct Sci. doi: 10.1017/S0954102012000739 Google Scholar
  9. Beaulieu M, Thierry AM, González-Acuña D, Polito MJ (2013) Integrating oxidative ecology into conservation physiology. Conserv Physiol 1:cot001. doi: 10.1093/conphys/cot001 CrossRefGoogle Scholar
  10. Beldomenico PM, Telfer S, Gebert S, Lukomski L, Bennett M, Begon M (2008) The dynamics of health in wild field vole populations: a haematological perspective. J Anim Ecol 77:984–997PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bertellotti M, D’Amico VL, Cejuela E (2013) Tourist activities focusing on Antarctic Penguins. Ann Tourism Res 42:428–431CrossRefGoogle Scholar
  12. Brown M (1996) Assessing body condition in birds. In: Nolan V, Ketterson ED (eds) Current ornithology. volume 13, chapter 3. Plenum Press, New YorkGoogle Scholar
  13. Cabrerizo A, Dachs J, Barceló D, Jones KC (2013) Climatic and biogeochemical controls on the remobilization and reservoirs of persistent organic pollutants in Antarctica. Environ Sci Technol 47:4299–4306PubMedCrossRefGoogle Scholar
  14. Campbell TW (1995) Avian hematology and cytology. Iowa State University Press, AmesGoogle Scholar
  15. Carabajal E, Massari N, Croci M, Lamas DM, Prestifilippo JP, Ciraolo P, Bergoc RM, Rivera ES, Medina VA (2012) Radioprotective potential of histamine on rat small intestine and uterus. Eur J Histochem 56:302–310CrossRefGoogle Scholar
  16. Carey C (2005) How physiological methods and concepts can be useful in conservation biology. Int Comp Biol 45:4–11CrossRefGoogle Scholar
  17. Carlini R, Coria NR, Santos MM, Negrete J, Juares MA, Daneri GA (2009) Responses of Pygoscelis adeliae and P. papua populations to environmental changes at Isla 25 de Mayo (King George Island). Polar Biol 32:1427–1433CrossRefGoogle Scholar
  18. Chapman EW, Hofmann EE, Patterson DL, Ribic CA, Fraser WR (2011) Marine and terrestrial factors affecting Adélie penguin Pygoscelis adeliae chick growth and recruitment off the western Antarctic Peninsula. Mar Ecol Prog Ser 436:273–289CrossRefGoogle Scholar
  19. Cooke SJ, Sack L, Franklin CE, Farrell AP, Beardall J, Wikelski M, Chown SL (2013) What is conservation physiology? Perspectives on an increasingly integrated and essential science. Cons Physiol 1:cot004. doi: 10.1093/conphys/cot004 Google Scholar
  20. D’Amico VL, Bertellotti M, Baker AJ, González PM (2010) Hematological and plasma biochemistry values for endangered red knots (Calidris canutus rufa) at wintering and migratory sites in Argentina. J Wildl Dis 46:644–648PubMedCrossRefGoogle Scholar
  21. D’Amico VL, Bertellotti M, Díaz JI, Coria N, Vidal V, Barbosa A (2014) Leucocyte levels in some Antarctic and non-Antarctic penguins. Ardeola 61:145–152Google Scholar
  22. Davis AK (2005) Effects of handling time and repeated sampling on avian white blood cell counts. J Field Ornithol 76:334–338CrossRefGoogle Scholar
  23. Davis AK, Maney DL, Maerz JC (2008) The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. Funct Ecol 22:760–777CrossRefGoogle Scholar
  24. Diaz JI, Fusaro B, Longarzo L, Coria NR, Vidal V, Jerez S, Ortiz J, Barbosa A (2013) Gastrointestinal helminths of Gentoo penguins (Pygoscelis papua) from Stranger point, 25 de Mayo/King George Island, Antarctica. Parasitol Res 112:1877–1881PubMedCrossRefGoogle Scholar
  25. Ducklow HW, Fraser WR, Meredith MP, Stammerjohn SE, Doney SC, Martinson DG, Sailley SF, Schofield OM, Steinberg DK, Venables HJ, Amsler CD (2013) West Antarctic Peninsula: an ice-dependent coastal marine ecosystem in transition. Oceanography 26:190–203CrossRefGoogle Scholar
  26. Emslie SD, Patterson WP (2007) Abrupt recent shift in 13C and 15N values in Adélie penguin eggshell in Antarctica. PNAS 104:11666–11669PubMedCrossRefPubMedCentralGoogle Scholar
  27. Fair J, Whitaker S, Pearson B (2007) Sources of variation in haematocrit in birds. Ibis 149:535–552CrossRefGoogle Scholar
  28. Forcada J, Trathan PN (2009) Penguin responses to climate change in the Southern Ocean. Glob Change Biol 15:1618–1630CrossRefGoogle Scholar
  29. Forcada J, Trathan PN, Reid K, Murphy EJ, Croxall JP (2006) Contrasting population changes in sympatric penguin species in association with climate warming. Glob Change Biol 12:411–423CrossRefGoogle Scholar
  30. Jenni-Eiermann S, Jenni L (1994) Plasma metabolite levels predict individual body-mass changes in a small long-distance migrant, the Garden Warbler. Auk 111:888–899CrossRefGoogle Scholar
  31. Jerez S, Motas M, Palacios MJ, Valera F, Cuervo JJ, Barbosa A (2011) Concentration of trace elements in feathers of three Antarctic penguins: geographical and interspecific differences. Environ Pollut 159:2412–2419PubMedCrossRefGoogle Scholar
  32. Juáres MA, Santos MM, Negrete J, Libertelli MM, Gray M, Moreira ME, Carlini A, Coria NR (2009) Tendencias poblacionales de pingüinos Pygoscelidos en tres localidades de las Islas Shetland del Sur, Antártida. V Simposio Latinoamericano sobre Investigaciones Antárticas y Simposio Ecuatoriano de Ciencia Polar. Resumen. p 28Google Scholar
  33. Kursa M, Bezrukov V (2008) Health status in an Antarctic top predator: micronuclei frequency and white blood cells differentials in the south polar skua (Catharacta maccormicki). Polarforschung 77:1–5Google Scholar
  34. Libertelli MM, Coria N, Marateo G (2003) Diet of the Adélie penguin during three consecutive chick rearing periods at Laurie Island. Polish Polar Res 24:133–142Google Scholar
  35. Lynch HJ, Naveen R, Trathan PN, Fagan WF (2012a) Spatially integrated assessment reveals widespread changes in penguin populations on the Antarctic Peninsula. Ecology 93:1367–1377PubMedCrossRefGoogle Scholar
  36. Lynch HJ, Fagan WF, Naveen R, Trivelpiece SG, Trivelpiece WZ (2012b) Differential advancement of breeding phenology in response to climate may alter staggered breeding among sympatric pygoscelid penguin. Mar Ecol Prog Ser 454:135–145CrossRefGoogle Scholar
  37. Matson KD, Ricklefs RE, Klasing KC (2005) A hemolysis-hemagglutination assay for characterizing constitutive innate humoral immunity in wild and domestic birds. Dev Comp Immunol 29:275–286PubMedCrossRefGoogle Scholar
  38. Miller AK, Karnovsky NJ, Trivelpiece WZ (2009) Flexible foraging strategies of gentoo penguins Pygoscelis papua over 5 years in the South Shetland Islands, Antarctica. Mar Biol 156:2527–2537CrossRefGoogle Scholar
  39. Morrison RIG, Davidson NC, Piersma T (2005) Transformations at high latitudes: why do red knots bring body stores to the breeding grounds? The Condor 107:449–457CrossRefGoogle Scholar
  40. Palacios MG, Cunnick JE, Vleck D, Vleck CM (2009) Ontogeny of innate and adaptive immune defense components in free-living tree swallows, Tachycineta bicolor. Dev Comp Immunol 33:456–463PubMedCrossRefGoogle Scholar
  41. Palacios MG, Cunnick J, Winkler D, Vleck CM (2012) Interrelations among immune defense indices reflect major components of the immune system in a free living vertebrate. Physiol Biochem Zool 85:1–10PubMedCrossRefGoogle Scholar
  42. Quillfeldt P, Masello JF, Möstl E (2004) Blood chemistry in relation to nutrition and ectoparasite load in Wilson’s storm-petrels Oceanites oceanicus. Polar Biol 27:168–176CrossRefGoogle Scholar
  43. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  44. Roitt I, Brostoff J, Male D (2001) Immunology. Mosby, LondonGoogle Scholar
  45. Sahoo PK, Das Mahapatra K, Saha JN, Barat A, Sahoo M, Mohanty BR, Gjerde B, Ødegard J, Rye M, Salte R (2008) Family association between immune parameters and resistance to Aeromonas hydrophila infection in the Indian major carp, Labeo rohita. Fish Shellfish Immun 25:163–169CrossRefGoogle Scholar
  46. Sailley SE, Ducklow HW, Moeller HV, Fraser WR, Schofield OM, Steinberg DK, Garzio LM, Doney SC (2013) Carbon fluxes and pelagic ecosystem dynamics near two western Antarctic Peninsula Adélie penguin colonies: an inverse model approach. Mar Ecol Prog Ser 492:253–272CrossRefGoogle Scholar
  47. SAS Institute Inc (2012) SAS Campus Drive, Cary, North CarolinaGoogle Scholar
  48. SCAR (2010) Antarctic climate change and the environment. Published by the Scientific Committee on Antarctic Research, Cambridge. ISBN 978-0-948277-22-1Google Scholar
  49. Shutler D, Marcogliese DJ (2011) Leukocyte profiles of Northern Leopard Frogs, Lithobates pipiens, exposed to pesticides and hematozoa in agricultural wetlands. Copeia 2:301–307CrossRefGoogle Scholar
  50. Stammerjohn SE, Martinson DG, Smith RC, Yuan X, Rind D (2008) Trends in Antarctic annual sea ice retreat and advance and their relation to ENSO and southern annular mode variability. J Geophys Res 113:C03S90. doi: 10.1029/2007JC004269 Google Scholar
  51. Trathan PN, Croxall JP, Murphy EJ (1996) Dynamics of Antarctic penguin populations in relation to inter-annual variability in sea-ice distribution. Polar Biol 16:321–330CrossRefGoogle Scholar
  52. Van Ngan PV, Gomes V, Passos MJACR, Ussami KA, Campos DYF, Da Silva AJ, Pereira BA (2007) Biomonitoring of the genotoxic potential (micronucleus and erythrocyte nuclear abnormalities assay) of the Admiralty Bay water surroundings the Brazilian Antarctic Research Station “Comandante Ferraz”, King George Island. Polar Biol 30:209–217CrossRefGoogle Scholar
  53. Wikelski M, Cooke SJ (2006) Conservation physiology. Trends Ecol Evol 21:38–46PubMedCrossRefGoogle Scholar
  54. Williams TD (1995) The penguins. Oxford University Press, OxfordGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Verónica L. D’Amico
    • 1
    Email author
  • Néstor Coria
    • 2
  • María Gabriela Palacios
    • 1
  • Andrés Barbosa
    • 3
  • Marcelo Bertellotti
    • 1
  1. 1.Group of Ecophysiology Applied to Management and Conservation of Wildlife, Department of Biology and Management of Aquatic ResourcesCentro Nacional Patagónico (CONICET)Puerto MadrynArgentina
  2. 2.Department of Biology of Top PredatorsInstituto Antártico ArgentinoBuenos AiresArgentina
  3. 3.Department of Evolutionary Ecology, Museo Nacional de Ciencias NaturalesCSICMadridSpain

Personalised recommendations