Skip to main content

Advertisement

Log in

Physiological differences between two overlapped breeding Antarctic penguins in a global change perspective

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Global change has affected the Antarctic Peninsula influencing the abundance of krill, one of the main preys of penguins. In areas where breeding penguin populations overlap, species with a more diverse diet have generally been less affected than krill-specialist species, which have shown population declines. Human activities can add to these changes, as penguins are sensitive to anthropic impacts such as contamination. Our objective was to assess whether selected physiological parameters of Adélie and Gentoo penguins reflect their contrasting population trends in a colony located at Punta Stranger (25 de Mayo Island/King George, South Shetland Islands) where they breed sympatrically. During 2012, we assessed the leukocyte profile, heterophil to lymphocyte ratio (H/L), erythrocytic nuclear abnormalities (ENAs), hematocrit, biochemical profile, and a measure of immune function (bacterial agglutination) in adults and chicks of both species. Higher values of ENAs, indicative of genotoxic damage caused by contaminants, are in accordance with a greater sensitivity to ongoing global changes by Adélie penguins. Levels of cholesterol and triglycerides strengthen this idea since individuals could be investing more resources in energy reserves to successfully cope with challenging environmental conditions during the breeding season. The remaining physiological parameters did not provide a clear picture. Furthermore, some results could be related to differences in diet. Gentoos show greater prey diversity than Adélie penguins, incorporating a richer parasite fauna, which could explain their higher heterophils and H/L. The physiological parameters measured here serve as baseline for a sustained monitoring of these rapidly changing populations. Further physiological variables, including stress hormone and indices of oxidative stress, remain to be assessed as potential indicators of population susceptibility to global change in this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ainley D, Russell J, Jenouvrier S, Woehler E, O’B Lyver F, Fraser WR, Kooyman GL (2010) Antarctic penguin response to habitat change as Earth’s troposphere reaches 28C above preindustrial levels. Ecol Monogr 80:49–66

    Article  Google Scholar 

  • Alonso-Alvarez C, Ferrer M, Velando A (2002) The plasmatic index of body condition in Yellow-legged Gulls Larus cachinnans: a food-controlled experiment. Ibis 144:147–149

    Article  Google Scholar 

  • Atkinson A, Siegel V, Pakhomov E, Rothery P (2004) Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432:100–103

    Article  PubMed  CAS  Google Scholar 

  • Atkinson A, Siegel V, Pakhomov E, Rothery P, Loeb V, Ross RM, Quentin LB, Schimidt K, Fretwell P, Murphy EJ, Tarling GA, Fleming AH (2008) Oceanic circumpolar habitats of Antarctic krill. Mar Ecol Prog Ser 362:1–23

    Article  CAS  Google Scholar 

  • Barbosa A, Merino S, Benzal J, Martinez J, Garcia-Fraile S (2007a) Geographic variation in immunoglobulin levels in pygocelid penguins. Polar Biol 30:219–225

    Article  Google Scholar 

  • Barbosa A, Merino S, Benzal J, Martinez J, Garcia-Fraile S (2007b) Population variability in heat shock proteins among three Antarctic penguin species. Polar Biol 30:1239–1244

    Article  Google Scholar 

  • Barbosa A, Benzal J, De León A, Moreno J (2012) Population decline of chinstrap penguins (Pygoscelis antarctica) on Deception Island, South Shetlands, Antarctica. Polar Biol 35:1453–1457

    Article  Google Scholar 

  • Barbosa A, Eva De Mas E, Benzal J, Diaz JI, Motas M, Jerez S, Pertierra L, Benayas J, Justel A, Lauzurica P, Garcia-Peña FJ, Serrano T (2013) Pollution and physiological variability in gentoo penguins at two rookeries with different levels of human visitation. Antarct Sci. doi:10.1017/S0954102012000739

    Google Scholar 

  • Beaulieu M, Thierry AM, González-Acuña D, Polito MJ (2013) Integrating oxidative ecology into conservation physiology. Conserv Physiol 1:cot001. doi:10.1093/conphys/cot001

    Article  Google Scholar 

  • Beldomenico PM, Telfer S, Gebert S, Lukomski L, Bennett M, Begon M (2008) The dynamics of health in wild field vole populations: a haematological perspective. J Anim Ecol 77:984–997

    Article  PubMed  PubMed Central  Google Scholar 

  • Bertellotti M, D’Amico VL, Cejuela E (2013) Tourist activities focusing on Antarctic Penguins. Ann Tourism Res 42:428–431

    Article  Google Scholar 

  • Brown M (1996) Assessing body condition in birds. In: Nolan V, Ketterson ED (eds) Current ornithology. volume 13, chapter 3. Plenum Press, New York

    Google Scholar 

  • Cabrerizo A, Dachs J, Barceló D, Jones KC (2013) Climatic and biogeochemical controls on the remobilization and reservoirs of persistent organic pollutants in Antarctica. Environ Sci Technol 47:4299–4306

    Article  PubMed  CAS  Google Scholar 

  • Campbell TW (1995) Avian hematology and cytology. Iowa State University Press, Ames

    Google Scholar 

  • Carabajal E, Massari N, Croci M, Lamas DM, Prestifilippo JP, Ciraolo P, Bergoc RM, Rivera ES, Medina VA (2012) Radioprotective potential of histamine on rat small intestine and uterus. Eur J Histochem 56:302–310

    Article  CAS  Google Scholar 

  • Carey C (2005) How physiological methods and concepts can be useful in conservation biology. Int Comp Biol 45:4–11

    Article  Google Scholar 

  • Carlini R, Coria NR, Santos MM, Negrete J, Juares MA, Daneri GA (2009) Responses of Pygoscelis adeliae and P. papua populations to environmental changes at Isla 25 de Mayo (King George Island). Polar Biol 32:1427–1433

    Article  Google Scholar 

  • Chapman EW, Hofmann EE, Patterson DL, Ribic CA, Fraser WR (2011) Marine and terrestrial factors affecting Adélie penguin Pygoscelis adeliae chick growth and recruitment off the western Antarctic Peninsula. Mar Ecol Prog Ser 436:273–289

    Article  Google Scholar 

  • Cooke SJ, Sack L, Franklin CE, Farrell AP, Beardall J, Wikelski M, Chown SL (2013) What is conservation physiology? Perspectives on an increasingly integrated and essential science. Cons Physiol 1:cot004. doi:10.1093/conphys/cot004

    Google Scholar 

  • D’Amico VL, Bertellotti M, Baker AJ, González PM (2010) Hematological and plasma biochemistry values for endangered red knots (Calidris canutus rufa) at wintering and migratory sites in Argentina. J Wildl Dis 46:644–648

    Article  PubMed  Google Scholar 

  • D’Amico VL, Bertellotti M, Díaz JI, Coria N, Vidal V, Barbosa A (2014) Leucocyte levels in some Antarctic and non-Antarctic penguins. Ardeola 61:145–152

  • Davis AK (2005) Effects of handling time and repeated sampling on avian white blood cell counts. J Field Ornithol 76:334–338

    Article  Google Scholar 

  • Davis AK, Maney DL, Maerz JC (2008) The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. Funct Ecol 22:760–777

    Article  Google Scholar 

  • Diaz JI, Fusaro B, Longarzo L, Coria NR, Vidal V, Jerez S, Ortiz J, Barbosa A (2013) Gastrointestinal helminths of Gentoo penguins (Pygoscelis papua) from Stranger point, 25 de Mayo/King George Island, Antarctica. Parasitol Res 112:1877–1881

    Article  PubMed  Google Scholar 

  • Ducklow HW, Fraser WR, Meredith MP, Stammerjohn SE, Doney SC, Martinson DG, Sailley SF, Schofield OM, Steinberg DK, Venables HJ, Amsler CD (2013) West Antarctic Peninsula: an ice-dependent coastal marine ecosystem in transition. Oceanography 26:190–203

    Article  Google Scholar 

  • Emslie SD, Patterson WP (2007) Abrupt recent shift in 13C and 15N values in Adélie penguin eggshell in Antarctica. PNAS 104:11666–11669

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fair J, Whitaker S, Pearson B (2007) Sources of variation in haematocrit in birds. Ibis 149:535–552

    Article  Google Scholar 

  • Forcada J, Trathan PN (2009) Penguin responses to climate change in the Southern Ocean. Glob Change Biol 15:1618–1630

    Article  Google Scholar 

  • Forcada J, Trathan PN, Reid K, Murphy EJ, Croxall JP (2006) Contrasting population changes in sympatric penguin species in association with climate warming. Glob Change Biol 12:411–423

    Article  Google Scholar 

  • Jenni-Eiermann S, Jenni L (1994) Plasma metabolite levels predict individual body-mass changes in a small long-distance migrant, the Garden Warbler. Auk 111:888–899

    Article  Google Scholar 

  • Jerez S, Motas M, Palacios MJ, Valera F, Cuervo JJ, Barbosa A (2011) Concentration of trace elements in feathers of three Antarctic penguins: geographical and interspecific differences. Environ Pollut 159:2412–2419

    Article  PubMed  CAS  Google Scholar 

  • Juáres MA, Santos MM, Negrete J, Libertelli MM, Gray M, Moreira ME, Carlini A, Coria NR (2009) Tendencias poblacionales de pingüinos Pygoscelidos en tres localidades de las Islas Shetland del Sur, Antártida. V Simposio Latinoamericano sobre Investigaciones Antárticas y Simposio Ecuatoriano de Ciencia Polar. Resumen. p 28

  • Kursa M, Bezrukov V (2008) Health status in an Antarctic top predator: micronuclei frequency and white blood cells differentials in the south polar skua (Catharacta maccormicki). Polarforschung 77:1–5

    Google Scholar 

  • Libertelli MM, Coria N, Marateo G (2003) Diet of the Adélie penguin during three consecutive chick rearing periods at Laurie Island. Polish Polar Res 24:133–142

    Google Scholar 

  • Lynch HJ, Naveen R, Trathan PN, Fagan WF (2012a) Spatially integrated assessment reveals widespread changes in penguin populations on the Antarctic Peninsula. Ecology 93:1367–1377

    Article  PubMed  Google Scholar 

  • Lynch HJ, Fagan WF, Naveen R, Trivelpiece SG, Trivelpiece WZ (2012b) Differential advancement of breeding phenology in response to climate may alter staggered breeding among sympatric pygoscelid penguin. Mar Ecol Prog Ser 454:135–145

    Article  Google Scholar 

  • Matson KD, Ricklefs RE, Klasing KC (2005) A hemolysis-hemagglutination assay for characterizing constitutive innate humoral immunity in wild and domestic birds. Dev Comp Immunol 29:275–286

    Article  PubMed  CAS  Google Scholar 

  • Miller AK, Karnovsky NJ, Trivelpiece WZ (2009) Flexible foraging strategies of gentoo penguins Pygoscelis papua over 5 years in the South Shetland Islands, Antarctica. Mar Biol 156:2527–2537

    Article  Google Scholar 

  • Morrison RIG, Davidson NC, Piersma T (2005) Transformations at high latitudes: why do red knots bring body stores to the breeding grounds? The Condor 107:449–457

    Article  Google Scholar 

  • Palacios MG, Cunnick JE, Vleck D, Vleck CM (2009) Ontogeny of innate and adaptive immune defense components in free-living tree swallows, Tachycineta bicolor. Dev Comp Immunol 33:456–463

    Article  PubMed  CAS  Google Scholar 

  • Palacios MG, Cunnick J, Winkler D, Vleck CM (2012) Interrelations among immune defense indices reflect major components of the immune system in a free living vertebrate. Physiol Biochem Zool 85:1–10

    Article  PubMed  CAS  Google Scholar 

  • Quillfeldt P, Masello JF, Möstl E (2004) Blood chemistry in relation to nutrition and ectoparasite load in Wilson’s storm-petrels Oceanites oceanicus. Polar Biol 27:168–176

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Roitt I, Brostoff J, Male D (2001) Immunology. Mosby, London

    Google Scholar 

  • Sahoo PK, Das Mahapatra K, Saha JN, Barat A, Sahoo M, Mohanty BR, Gjerde B, Ødegard J, Rye M, Salte R (2008) Family association between immune parameters and resistance to Aeromonas hydrophila infection in the Indian major carp, Labeo rohita. Fish Shellfish Immun 25:163–169

    Article  CAS  Google Scholar 

  • Sailley SE, Ducklow HW, Moeller HV, Fraser WR, Schofield OM, Steinberg DK, Garzio LM, Doney SC (2013) Carbon fluxes and pelagic ecosystem dynamics near two western Antarctic Peninsula Adélie penguin colonies: an inverse model approach. Mar Ecol Prog Ser 492:253–272

    Article  Google Scholar 

  • SAS Institute Inc (2012) SAS Campus Drive, Cary, North Carolina

  • SCAR (2010) Antarctic climate change and the environment. Published by the Scientific Committee on Antarctic Research, Cambridge. ISBN 978-0-948277-22-1

    Google Scholar 

  • Shutler D, Marcogliese DJ (2011) Leukocyte profiles of Northern Leopard Frogs, Lithobates pipiens, exposed to pesticides and hematozoa in agricultural wetlands. Copeia 2:301–307

    Article  Google Scholar 

  • Stammerjohn SE, Martinson DG, Smith RC, Yuan X, Rind D (2008) Trends in Antarctic annual sea ice retreat and advance and their relation to ENSO and southern annular mode variability. J Geophys Res 113:C03S90. doi:10.1029/2007JC004269

    Google Scholar 

  • Trathan PN, Croxall JP, Murphy EJ (1996) Dynamics of Antarctic penguin populations in relation to inter-annual variability in sea-ice distribution. Polar Biol 16:321–330

    Article  Google Scholar 

  • Van Ngan PV, Gomes V, Passos MJACR, Ussami KA, Campos DYF, Da Silva AJ, Pereira BA (2007) Biomonitoring of the genotoxic potential (micronucleus and erythrocyte nuclear abnormalities assay) of the Admiralty Bay water surroundings the Brazilian Antarctic Research Station “Comandante Ferraz”, King George Island. Polar Biol 30:209–217

    Article  Google Scholar 

  • Wikelski M, Cooke SJ (2006) Conservation physiology. Trends Ecol Evol 21:38–46

    Article  PubMed  Google Scholar 

  • Williams TD (1995) The penguins. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgments

We very much appreciated the hospitality and logistic support of the Argentinean Antarctic Base “Carlini (ex Jubany).” We thank J. Menucci for providing the maps and two anonymous reviewers for their suggestions that helped improve our manuscript. We are grateful for the logistic support and permits provided by the Instituto Antártico Argentino (IAA–DNA). AB was supported by the project CTM2011-24425. Permits to work at the site and handle penguins were given by Dirección Nacional del Antártico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verónica L. D’Amico.

Additional information

This article is an invited contribution on Life in Antarctica: Boundaries and Gradients in a Changing Environment as the main theme of the XIth SCAR Biology Symposium. J.-M. Gili and R. Zapata Guardiola (Guest Editors).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Amico, V.L., Coria, N., Palacios, M.G. et al. Physiological differences between two overlapped breeding Antarctic penguins in a global change perspective. Polar Biol 39, 57–64 (2016). https://doi.org/10.1007/s00300-014-1604-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-014-1604-9

Keywords

Navigation