Polar Biology

, Volume 38, Issue 2, pp 189–205 | Cite as

A comparison of epiphytic diatom communities on Plocamium cartilagineum (Plocamiales, Florideophyceae) from two Antarctic areas

  • Roksana MajewskaEmail author
  • Piotr Kuklinski
  • Piotr Balazy
  • Nair Sumie Yokoya
  • Aline Paternostro Martins
  • Mario De Stefano
Original Paper


Our understanding of diatoms, one of the most important Antarctic primary producers, is based mostly on investigations of plankton, sea-ice, and sediment samples. Herein, we contribute to the limited research devoted to benthic Antarctic diatoms by presenting a study on epiphytic diatom communities sampled in two remote Antarctic regions: Admiralty Bay (maritime Antarctica, Antarctic Peninsula) and Terra Nova Bay (Ross Sea). Recent studies have demonstrated that the most critical factor for the local epiphytic diatom communities was the nature of the substrate. In order to eliminate this factor so we could evaluate other potential controls, we sampled epiphytic diatoms from only one substrate that is common to both regions: the macroalgae Plocamium cartilagineum (L.) Dixon. Thalli of P. cartilagineum and their associated microalgal community was collected in January 2011 (Admiralty Bay) and 2012 (Terra Nova Bay) from a water depth of 5–25 m. Dehydrated macroalgal pieces were placed on stubs and sputter-coated, which allowed observation of diatoms attached to the substrate in their original position using scanning electron microscopy. A total of 72 taxa were observed, of which 31 taxa were common to both regions. Cell abundance and diatom growth form dominance were significantly different in Admiralty Bay and Terra Nova Bay samples. Total diatom abundance was higher in Admiralty Bay samples, dominated by adnate diatoms (Cocconeis spp.), but the number of taxa found as well as the values of ecological indices were higher for samples from the Ross Sea, where motile forms were dominant (Navicula spp.). Our results suggest that Antarctic shallow-water benthic habitats may present a high degree of microniche heterogeneity and highlight the need of fine-scale analyses in microbial studies. We also suggest grazers as a factor that contributes greatly to the observed differences.


Antarctic diatoms Epiphytes Grazing Growth form Plocamium cartilagineum SEM 



Many people helped us plan and implement this study. We are grateful to everyone, especially to Andrzej Tatur and Jarosław Roszczyk for their invaluable help in making the expedition to “H. Arctowski” Station possible and to all members of the XXXV Polish Antarctic Expedition for the hospitality and friendliness while visiting the station. We thank Tadeusz Stryjek who contributed to the collection of macroalgae from Admiralty Bay, Enrico Olivari who helped collected data from Terra Nova Bay, and Paolo Povero for making the data on physical parameters in Terra Nova Bay available. We also thank Brett Grant for his generous assistance with the linguistic revision of the manuscript. Detailed comments and valuable suggestions by the editor, anonymous reviewers and David M. Harwood on the previous version of this work are gratefully acknowledged. This study was financially supported by the Second University of Naples (SUN), Polish Academy of Sciences (PAS), and the Italian National Program of Research in Antarctica (it. PNRA) coordinated by the Italian National Research Council (it. CNR).

Supplementary material

300_2014_1578_MOESM1_ESM.doc (60 kb)
Supplementary material 1 (DOC 59 kb)


  1. Abrantes F, Lopes C, Mix A, Pisias N (2007) Diatoms in Southeast Pacific surface sediments reflect environmental properties. Quat Sci Rev 26:155–169CrossRefGoogle Scholar
  2. Ahn IY, Chung H, Kang JS, Kang SH (1997) Diatom composition and biomass variability in nearshore waters of Maxwell Bay, Antarctica, during the 1992/1993 austral summer. Polar Biol 17:123–130CrossRefGoogle Scholar
  3. Al-Handal AY, Wulff A (2008a) Marine benthic diatoms from Potter Cove, King George Island, Antarctica. Bot Mar 51:51–68Google Scholar
  4. Al-Handal AY, Wulff A (2008b) Marine epiphytic diatoms from the shallow sublittoral zone in Potter Cove, King George Island, Antarctica. Bot Mar 51:411–435Google Scholar
  5. Al-Handal AY, Riaux-Gobin C, Romero OE, Wulff A (2008) Two new marine species of the diatom genus Cocconeis Ehrenberg: C. melchioroides sp. nov. and C. dallmannii sp. nov., from King George Island, Antarctica. Diatom Res 23:269–281CrossRefGoogle Scholar
  6. Al-Handal AY, Riaux-Gobin C, Wulff C (2010) Cocconeis pottercovei sp. nov. and Cocconeis pinnata var. matsii var. nov., Two new marine diatom taxa from King George Island, Antarctica. Diatom Res 25:1–11CrossRefGoogle Scholar
  7. Archer SD, Leakey RJG, Burkill PH, Sleigh MA, Appleby CJ (1996) Microbial ecology of sea ice at a coastal Antarctic site: community composition, biomass and temporal change. Mar Ecol Prog Ser 135:179–195CrossRefGoogle Scholar
  8. Arntz WE, Brey T, Gallardo VA (1994) Antarctic Zoobenthos. Oceanogr Mar Biol Annu Rev 32:241–304Google Scholar
  9. Baldi F, Marchetto D, Pini F, Fani R, Michaud L, Lo Giudice A, Berto D, Giani M (2010) Biochemical and microbial features of shallow marine sediments along the Terra Nova Bay (Ross Sea, Antarctica). Cont Shelf Res 30:1614–1625CrossRefGoogle Scholar
  10. Barbara L, Crosta X, Schmidt S, Massé G (2013) Diatoms and biomarkers evidence for major changes in sea ice conditions prior the instrumental period in Antarctic Peninsula. Quat Sci Rev 79:99–110CrossRefGoogle Scholar
  11. Bargagli R (2004) The Southern Ocean environment: anthropogenic impact and climate change. In: Antarctic ecosystems. Environmental contamination, climate change, and human impact, 1st edn. Springer, Berlin, pp 83–123Google Scholar
  12. Bogaczewicz-Adamczak B, Kłosińska D, Zgrundo A (2001) Diatoms as indicators of water pollution in the coastal zone of the Gulf of Gdańsk. Oceanol Stud 30:59–75Google Scholar
  13. Bouma TJ, Olenin S, Reise K, Ysebaert T (2009) Ecosystem engineering and biodiversity in coastal sediments: posing hypotheses. Helgol Mar Res 63:95–106CrossRefGoogle Scholar
  14. Bowman JP (2013) Sea-ice microbial communities. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Phompson F (eds) The prokaryotes: prokaryotic communities and ecophysiology. Heidelberg, pp 139–161Google Scholar
  15. Bradshaw C, Collins P, Brand AR (2003) To what extent does upright sessile epifauna affect benthic biodiversity and community structure? Mar Biol 143:783–791CrossRefGoogle Scholar
  16. Brandini FP, Rebello J (1994) Wind field effect on hydrography and chlorophyll dynamics in the coastal pelagial of Admiralty Bay, King George Island, Antarctica. Ant Sci 6:433–442CrossRefGoogle Scholar
  17. Campana G, Quartino ML, Yousif A, Wulff A (2008) Impact of UV radiation and grazing on the structure of a subtidal benthic diatom assemblages in Antarctica. Ber Polar-forsch Meeresforsch 571:302–310Google Scholar
  18. Campana GL, Zacher K, Fricke A, Molis M, Wulff A, Quartino ML, Wiencke C (2009) Drivers of colonization and succession in polar benthic macro- and microalgal communities. Bot Mar 52:655–667CrossRefGoogle Scholar
  19. Cattaneo-Vietti R, Chiantore M, Misic C, Povero P, Fabiano M (1999) The role of pelagic-benthic coupling in structuring littoral benthic communities at Terra Nova Bay (Ross Sea) and in the Straits of Magellan. Sci Mar 63:113–121CrossRefGoogle Scholar
  20. Cefarelli AO, Ferrario ME, Almandoz GO, Atencio AG, Akselman R, Vernet M (2010) Diversity of the diatom genus Fragilariopsis in the Argentine Sea and Antarctic waters: morphology, distribution and abundance. Polar Biol 33:1463–1484CrossRefGoogle Scholar
  21. Clarke KR, Gorley RN (2006) PRIMER V6: user manual/tutorial. PRIMER-E Ltd, PlymouthGoogle Scholar
  22. Cormaci M (1995) The macrophytobenthos of Terra Nova Bay (Ross Sea, Antarctica): results of three Italian scientific expeditions. G Bot Ital 129:1233–1295CrossRefGoogle Scholar
  23. Cormaci M, Furnari G, Scammacca B (1992) The benthic algal flora of Terra Nova Bay (Ros Sea, Antarctica). Bot Mar 35:541–552Google Scholar
  24. Cremer H, Roberts D, McMinn A, Gore D, Melles M (2003) The Holocene diatom flora of marine bays in Windmill Islands, East Antarctica. Bot Mar 46:82–106CrossRefGoogle Scholar
  25. Dawber M, Powell RD (1997) Epifaunal distribution at Antarctic marine-ending glaciers: influences of ice dynamics and sedimentation. In: Ricci CA (ed) The Antarctic region: geological evolution and processes. Terra Antarctica Publication, Siena, pp 875–884Google Scholar
  26. Dayton PK, Oliver JS (1977) Antarctic soft-bottom benthos in oligotrophic and eutrophic environments. Science 197:55–58PubMedCrossRefGoogle Scholar
  27. Dixit SS, Smol JP, Kingston JC, Charles DF (1992) Diatoms: powerful indicators of environmental change. Environ Sci Technol 26:22–33CrossRefGoogle Scholar
  28. Ehrenberg CG (1843) Verbreitung und Einfluss des mikroskopischen Lebens in Süd- und Nord-America. Abh Königl Akad Wiss Berlin 1:291–445Google Scholar
  29. Elverhøi A, Roaldset E (1983) Glaciomarine sediments and suspended particulate matter, Weddell Sea Shelf, Antarctica. Polar Res 1:1–21CrossRefGoogle Scholar
  30. Esper O, Gersonde R (2014) New tool for the reconstruction of Pleistocene Antarctic sea ice. Palaeogeogr Palaeoclimatol Palaeoecol. doi: 10.1016/j.palaeo.2014.01.019
  31. Everitt DA, Thomas DP (1986) Observations of seasonal changes in diatoms at inshore localities near Davis Station, East Antarctica. Hydrobiologia 139:3–12CrossRefGoogle Scholar
  32. Fernandes LL, Procopiak LK, Portinho D (2007) Brandinia mosimanniae gen. nov. et sp. nov., a new marine epilithic diatom from the Antarctic coasts. Diatom Res 22:45–56CrossRefGoogle Scholar
  33. Frenguelli J (1960) Diatomeas y Silicoflagelados recogidas en Tierra Adelia durante las Expediciones Polares Francesas de Paul-Emile Victor (1950–1952). Rev Algol 5:1–47Google Scholar
  34. Frenguelli J, Orlando HA (1958) Diatomeas y Silicoflagelados del sector Antarctico Sudamericano. Publication no. 5. Instituto Antarctico Argentino, Buenos AiresGoogle Scholar
  35. Gallardo VA (1987) The sublittoral macrofaunal benthos of the Antarctic shelf. Environ Internat 13:71–81CrossRefGoogle Scholar
  36. Gambi MC, Lorenti M, Russo GF, Scipione MB (1994) Benthic associations of the shallow hard bottoms off Terra Nova Bay, Ross Sea: zonation, biomass and population structure. Antarct Sci 6:449–462CrossRefGoogle Scholar
  37. Gili JM, Hughes RG (1995) The ecology of marine benthic hydroids. Oceanogr Mar Biol Ann Rev 33:351–426Google Scholar
  38. Gili JM, Coma R, Orejas C, López-González PJ, Zabala M (2001) Are Antarctic suspension-feeding communities different from those elsewhere in the world? Polar Biol 24:473–485CrossRefGoogle Scholar
  39. Gosselain V, Hudon C, Cattaneo A, Gagnon P, Planas D, Rochefort D (2005) Physical variables driving epiphytic algal biomass in a dense macrophyte bed of the St. Lawrence River (Quebec, Canada). Hydrobiology 534:11–22CrossRefGoogle Scholar
  40. Gutt J (2001) On the direct impact of ice on marine benthic communities, a review. Polar Biol 24:553–564CrossRefGoogle Scholar
  41. Hasle GR (1965) Nitzschia and Fragilariopsis species studied in the light and electron microscopes: III. The genus Fragilariopsis. Skrifter Norske Videnskaps-Akad 21:1–49Google Scholar
  42. Hasle GR, Medlin LK, Syvertsen EE (1994) Synedropsis gen. nov., a genus of araphid diatoms associated with sea ice. Phycologia 33:248–270CrossRefGoogle Scholar
  43. Heiden H, Kolbe RW (1928) Die marinen Diatomeen der Deutschen Süd polar-Expedition 1901–1903. In: von Drygalski E (ed) Deutsche Südpolar-Expedition 1901–1903, VIII. Band Botanik. De Gruyter, Berlin, pp 447–715Google Scholar
  44. Hudon C, Bourget E (1983) The effect of light on the vertical structure of epibenthic diatom communities. Bot Mar 26:317–330CrossRefGoogle Scholar
  45. Hustedt F (1958) Diatomeen aus der Antarktis und dem Südatlantik. In: Deutsche Antarktische Expedition 1938/39 2:103–191Google Scholar
  46. Klöser H, Ferreyra G, Schloss I, Mercuri G, Laturnus F, Curtosi A (1993) Seasonal variation of algal growth conditions in sheltered Antarctic bays: the example of Potter Cove (King George Island, South Shetlands). J Mar Syst 4:289–301CrossRefGoogle Scholar
  47. Knuth SL, Cassano JJ (2011) An Analysis of Near-Surface Winds, Air Temperature, and Cyclone Activity in Terra Nova Bay, Antarctica, from 1993 to 2009. J Appl Meteor Climatol 50:662–680. doi: 10.1175/2010JAMC2507.1 CrossRefGoogle Scholar
  48. Korsun S, Hald M (1998) Modern benthic foraminifera off Novaya Zemlya tidewater glaciers, Russia Arctic. Arct Alp Res 30:61–77CrossRefGoogle Scholar
  49. Kuklinski P, Balazy P (2014) Scale of temperature variability in the maritime Antarctic intertidal zone. J Sea Res 85:542–546CrossRefGoogle Scholar
  50. Lazarus D, Barron J, Renaudie J, Diver P, Türke A (2014) Cenozoic planktonic marine diatom diversity and correlation to climate change. PLoS ONE 9:e84857. doi: 10.1371/journal.pone.0084857 PubMedCentralPubMedCrossRefGoogle Scholar
  51. Lipski M (1987) Variations of physical conditions, nutrients and chlorophyll a contents in Admiralty Bay (King George Island, South Shetland Islands, 1979). Pol Polar Res 8:307–332Google Scholar
  52. Logares RE (2006) Does the global microbiota consist of a few cosmopolitan species. Ecol Austral 16:85–90Google Scholar
  53. Lyon BR, Mock T (2014) Polar microalgae: new approaches towards understanding adaptations to an extreme and changing environment. Biology 3:56–80. doi: 10.3390/biology3010056 PubMedCentralPubMedCrossRefGoogle Scholar
  54. Majewska R, Gambi MC, Totti CM, Pennesi C, De Stefano M (2013a) Growth form analysis of epiphytic diatom communities of Terra Nova Bay (Ross Sea, Antarctica). Polar Biol 36:73–86. doi: 10.1007/s00300-012-1240-1 CrossRefGoogle Scholar
  55. Majewska R, Gambi MC, Totti CM, De Stefano M (2013b) Epiphytic diatom communities of Terra Nova Bay (Ross Sea, Antarctica): structural analysis and relations to algal host. Antarct Sci 25:501–513. doi: 10.1017/S0954102012001101 CrossRefGoogle Scholar
  56. Mangin L (1915) Phytoplancton de l’Antarctique. Deuxième expédition Antarctique Française 1908–1910, commandée par le Dr Jean Charcot. Sciences naturelles: documents scientifiques. Masson et Cie, ParisGoogle Scholar
  57. Manguin E (1957) Premier inventaire des diatomées de la Terre Adélie Antarctique. Espéces nouvelles. Rev Algol 3:111–134Google Scholar
  58. Manguin E (1960) Les diatomées de la Terre Adélie Antarctique. Campagne du “Commandant Charcot” 1949–1950. Ann Sci Nat Bot 12:223–363Google Scholar
  59. McCormick PV, Stevenson RJ (1991) Grazer control of nutrient availability in the periphyton. Oecologia 86:287–291CrossRefGoogle Scholar
  60. McMinn A, Bleakley N, Steinburner K, Roberts D, Trenerry L (2000) Effect of permanent sea ice cover and different nutrient regimes on the phytoplankton succession of fjords of the Vestfold Hills Oasis, eastern Antarctica. J Plankton Res 22:287–303CrossRefGoogle Scholar
  61. Nedwell DB, Walker TR, Ellis-Evans JC, Clarke A (1993) Measurements of seasonal rates and annual budgets of organic carbon fluxes in an Antarctic coastal environment at Signy Island, South Orkney Islands, suggests a broad balance between production and decomposition. Appl Environ Microbiol 59:3989–3995PubMedCentralPubMedGoogle Scholar
  62. Nedzarek A, Rakusa-Suszczewski S (2004) Decomposition of macroalgae and the release of nutrients in Admiralty Bay, King George Island, Antarctica. Polar Biosci 17:26–35Google Scholar
  63. Nędzarek A, Rakusa-Suszczewski S (2007) Nutrients and conductivity in precipitation in the coast of King George Island (Antarctica) in relation to wind speed and penguin colony distance. Pol J Ecol 55:705–716Google Scholar
  64. Oliveira EC, Absher TM, Pellizzari FM, Oliveira MC (2009) The seaweed flora of Admiralty Bay, King George Island, Antarctic. Polar Biol 32:1639–1647CrossRefGoogle Scholar
  65. Palmer AJM, Abbott WH (1986) Diatoms as indicators of sea-level change. In: van de Plassche O (ed.) Sea-level research: a manual for the collection and evaluation of data, 1st edn. Springer, Berlin, pp 457–487Google Scholar
  66. Pane L, Feletti M, Francomacaro B, Mariottini GL (2004) Summer coastal zooplankton biomass and copepod community structure near the Italian Terra Nova Base (Terra Nova Bay, Ross Sea, Antarctica). J Plankton Res 26:1479–1488CrossRefGoogle Scholar
  67. Peragallo M (1921) Diatomées d’eau douce et diatomées d’eau salée. In: Joubin L (ed) Deuxiéme expédition Antarctique française (1908–1910) commandée par le Dr Jean Charcot. Sciences naturelles: Documents scientifiques. Botanique, Masson et Cie, Paris, pp 1–98Google Scholar
  68. Pichlmaier M, Aquino FE, Da-Silva CS, Braun M (2004) Suspended sediments in Admiralty Bay, King George Island (Antarctica). Braz Antart Res 4:77–85Google Scholar
  69. Poulin M, Bérard-Therriault L, Cardinal A (1984a) Les diatomées benthiques de substrats durs des eaux marines et saumâtres du Québec. 1. Cocconeioideae (Achnanthales, Achnanthaceae). Nat Can 111:45–61Google Scholar
  70. Poulin M, Bérard-Therriault L, Cardinal A (1984b) Les diatomées benthiques de substrats durs des eaux marines et saumâtres du Québec. 2. Tabellarioideae et Diatomoideae (Fragilariales, Fragilariaceae). Nat Can 111:275–295Google Scholar
  71. Poulin M, Bérard-Therriault L, Cardinal A (1984c) Les diatomées benthiques de substrats durs des eaux marines et saumâtres du Québec. 3. Fragilarioideae (Fragilariales, Fragilariaceae). Nat Can 111:349–367Google Scholar
  72. Powell RD, Dawber M, McInnes JN, Pyne AR (1996) Observation of the grounding-line area at a floating glacier terminus. Ann Glaciol 22:217–223Google Scholar
  73. Pruszak Z (1980) Currents circulation in the waters of Admiralty Bay (region of Arctowski Station on King George Island). Pol Polar Res 1:55–74Google Scholar
  74. Qin X, Sun L, Blais JM, Wang Y, Huang T, Huang W, Xie Z (2014) From sea to land: assessment of the bio-transport of phosphorus by penguins in Antarctica. Chin J Oceanol Limnol 32:148–154CrossRefGoogle Scholar
  75. Rakusa-Suszczewski S (1995a) Flow of matter in the Admiralty Bay area, King George Island, maritime Antarctic. Proc NIPR Symp Polar Biol 8:101–113Google Scholar
  76. Rakusa-Suszczewski S (1995b) The hydrography of Admiralty Bay and its inlets, covets and lagoons (King George Island, Antarctica). Pol Polar Res 16:61–70Google Scholar
  77. Rakusa-Suszczewski S, Zieliński K (1993) Makrophytobenthos. In: Rakusa-Suszczewski S (ed) The maritime Antarctic coastal ecosystem of Admiralty Bay. Department of Antarctic Biology Polish Academy of Sciences, Warsaw, pp 57–60Google Scholar
  78. Riaux-Gobin C, Poulin M, Prodon R, Treguer P (2003) Land-fast ice microalgal and phytoplanktonic communities (Adélie Land, Antarctica) in relation to environmental factors during ice break-up. Ant Sci 15:353–364CrossRefGoogle Scholar
  79. Riaux-Gobin C, Compère P, Al-Handal AY (2011) Species of the Cocconeis peltoides group with a marginal row of unusual processes (Mascarenes and Kerguelen Islands, Indian Ocean). Diatom Res 26:325–338CrossRefGoogle Scholar
  80. Rivaro P, Ianni C, Massolo S, Abelmoschi ML, De Vittor C, Frache R (2011) Distribution of dissolved labile and particulate iron and copper in Terra Nova Bay polynya (Ross Sea, Antarctica) surface waters in relation to nutrients and phytoplankton growth. Cont Shelf Res 31:879–889CrossRefGoogle Scholar
  81. Robakiewicz M, Rakusa-Suszczewski S (1999) Application of 3D circulation model to Admiralty Bay, King George Island, Antarctica. Pol Polar Res 20:43–58Google Scholar
  82. Roberts D, McMinn A, Cremer H, Gore DB, Melles M (2004) The Holocene evolution and palaeosalinity history of Beall Lake, Windmill Islands (East Antarctica) using an expanded diatom-based weighted averaging model. Palaeogeogr Palaeoclimatol Palaeoecol 208:121–140CrossRefGoogle Scholar
  83. Romero OE, Armand LK (2010) Marine diatoms as indicators of modern changes in oceanographic conditions. In: Stoermer EF, Smol JP (eds) The diatoms: applications for the environmental and earth sciences, 2nd edn. Cambridge University Press, Cambridge, pp 373–400CrossRefGoogle Scholar
  84. Romero OE, Rivera P (1996) Morphology and taxonomy of three varieties of Cocconeis costata and C. pinnata (Bacillariophyceae) with consideration of Pleuroneis. Diatom Res 11:317–343CrossRefGoogle Scholar
  85. Round FE (1981) The Ecology of Algae. Cambridge University Press, CambridgeGoogle Scholar
  86. Sarukhanyan EJ, Tokarczyk R (1988) Coarse-scale hydrological conditions in Admiralty Bay, King George Island, West Antarctica, summer 1982. Pol Polar Res 9:121–132Google Scholar
  87. Schantz A, Polte P, Asmus H (2002) Cascading effects of hydrodynamics on an epiphyte-grazer system in intertidal seagrass beds of the Wadden Sea. Mar Biol 141:287–297CrossRefGoogle Scholar
  88. Schoefs B (2014) Progress in diatom research: from taxonomy to physiology. Diatom Res 29:3–4. doi: 10.1080/0269249X.2014.880556 CrossRefGoogle Scholar
  89. Scoffin TP (1970) The trapping and binding of subtidal carbonate sediments by marine vegetation in Bimini Lagoon, Bahamas. J Sed Petrol 40:249–273CrossRefGoogle Scholar
  90. Scott FJ, Thomas DP (2005) Diatoms. In: Scott FJ, Marchant HJ (eds) Antarctic marine protists. Australian biological resources study. Canberra and Australian Antarctic Division, Hobart, pp 13–201Google Scholar
  91. Siciński J, Jażdżewski K, De Broyer C, Presler P, Ligowski R, Nonato EF, Corbisier TN, Petti MAV, Brito TAS, Lavrado HP, Błażewicz-Paszkowycz M, Pabis K, Jażdżewska A, Campos LS (2011) Admiralty Bay benthos diversity—A census of a complex polar ecosystem. Deep Sea Res II 58:30–48CrossRefGoogle Scholar
  92. Skinner DNB (2011) The geology of Terra Nova Bay. In: Oliver RL, Jago JB, James PR (eds) Antarctic earth science. Fourth international symposium. Cambridge University Press, New York, pp 150–155Google Scholar
  93. Sommer U (1996) Nutrient competition experiments with periphyton from the Baltic Sea. Mar Ecol Prog Ser 140:161–167CrossRefGoogle Scholar
  94. Spaulding SA, Van de Vijver B, Hodgson DA, McKnight DM, Verleyen E, Stanish L (2010) Diatoms as indicators of environmental changes in Antarctic freshwaters. In: Stoermer EF, Smol JP (eds) The diatoms: applications for environmental and earth sciences, 2nd edn. Cambridge University Press, New York, pp 267–286CrossRefGoogle Scholar
  95. Stanish LF, Bagshaw EA, McKnight DM, Fountain AG, Tranter M (2013) Environmental factors influencing diatom communities in Antarctic cryoconite holes. Environ Res Lett 8:1–8CrossRefGoogle Scholar
  96. Sudhakar G, Jyothi B, Vankateswarlu V (1994) Role of diatoms as indicators of pollution gradients. Environ Monit Assess 33:85–99PubMedCrossRefGoogle Scholar
  97. Sundbäck K, Nilsson P, Nilsson C, Jönsson B (1996) Balance between autotrophic and heterotrophic components and processes in microbenthic communities of sandy sediments: a field study. Estuar Coast Mar Sci 43:689–706CrossRefGoogle Scholar
  98. Szafrański Z, Lipski M (1982) Characteristics of water temperature and salinity at Admiralty Bay (King George Island, South Shetland Islands, Antarctic) during the austral summer 1978/1979. Pol Polar Res 3:7–24Google Scholar
  99. Tatur A, Myrcha A (1983) Changes in chemical composition of waters running off from the penguin rookeries in the Admiralty Bay region (King George Island, South Shetland Islands, Antarctica). Pol Polar Res 4:113–125Google Scholar
  100. Thomas DP, Jiang J (1986) Epiphytic diatoms of the inshore marine area near Davis Station. Hydrobiologia 140:193–198CrossRefGoogle Scholar
  101. Tin T, Fleming ZL, Hughes KA, Ainley DG, Convey P, Moreno CA, Pfeiffer S, Scott J, Snape I (2009) Review. Impacts of local human activities on the Antarctic environment. Ant Sci 21:3–33CrossRefGoogle Scholar
  102. Tokarczyk R (1987) Classification of water masses in the Bransfield Strait and southern part of the Drake Passage using a method of statistical multi-dimensional analysis. Pol Polar Res 8:333–366Google Scholar
  103. Turner JRG (2004) Explaining the global biodiversity gradient: energy, area, history and natural selection. Basic Appl Ecol 5:435–448CrossRefGoogle Scholar
  104. Van Heurck H (1909) Diatomées. In: Expédition Antarctique Belge, Résultats du voyage du SY Belgica en 1897–1898–1899 sous de commandement de A de Gerlache de Gomery. Rapports scientifiques. Botanique. J-E Bushmann, Anvers, pp 1–129Google Scholar
  105. Vincent WF (2000) Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. Antarct Sci 12:374–385CrossRefGoogle Scholar
  106. Vincent WF (2004) Microbial ecosystems of Antarctica. Cambridge University Press, CambridgeGoogle Scholar
  107. Wilkins D, Yau S, Williams TJ, Allen MA, Brown MV, DeMaere MZ, Lauro FM, Cavicchioli R (2013) Key microbial drivers in Antarctic aquatic environments. FEMS Microbiol Rev 37:303–335. doi: 10.1111/1574-6976.12007 PubMedCrossRefGoogle Scholar
  108. Wlodarska M, Weslawski JM, Gromisz S (1996) A comparison of the macrofaunal community structure and diversity in two Arctic glacial bays—a “cold” one and a “warm” one off Spitsbergen. Oceanologia 38:251–283Google Scholar
  109. Wulff A, Iken K, Quartino ML, Al-Handal A, Wiencke C, Clayton MN (2009) Biodiversity, biogeography and zonation of marine benthic micro- and macroalgae in the Arctic and Antarctic. Bot Mar 52:491–507CrossRefGoogle Scholar
  110. Wulff A, Iken K, Quartino ML, Al-Handal A, Wiencke C, Clayton MN (2011) Biodiversity, biogeography and zonation of marine benthic micro- and macroalgae in the Arctic and Antarctic. In: Wiencke C (ed) Biology of Polar Benthic Algae. Walter de Gruyter GmbH & Co. KG, Berlin, pp 23–52Google Scholar
  111. Zacher K, Hanelt D, Wiencke C, Wulff A (2007) Grazing and UV radiation effects on an Antarctic intertidal microalgal assemblage: a long-term field study. Polar Biol 30:1203–1212CrossRefGoogle Scholar
  112. Zieliński K (1990) Bottom macroalgae of the Admiralty Bay (King George Island, South Shetland Islands, Antarctic). Pol Polar Res 11:95–131Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Roksana Majewska
    • 1
    Email author
  • Piotr Kuklinski
    • 2
  • Piotr Balazy
    • 2
  • Nair Sumie Yokoya
    • 3
  • Aline Paternostro Martins
    • 4
  • Mario De Stefano
    • 1
  1. 1.Second University of NaplesCasertaItaly
  2. 2.Institute of OceanologyPolish Academy of SciencesSopotPoland
  3. 3.Institute of BotanyCentre for Research in PhycologySão PauloBrazil
  4. 4.Institute of ChemistryUniversity of Sao PaoloSão PauloBrazil

Personalised recommendations