Marine archaeal community structure from Potter Cove, Antarctica: high temporal and spatial dominance of the phylum Thaumarchaeota

Abstract

Archaeal communities represent a significant fraction of the Antarctic marine microbial plankton and surely play a relevant role in the proper functioning of the ecosystem. We studied the archaeal community structure in surface water samples from Potter Cove, Antarctica. Temporal and spatial variability was investigated along a whole year cycle using DGGE and 16S rRNA gene sequencing from clone libraries. Additionally, photosynthetic pigments, suspended particulate matter (SPM), salinity and temperature were measured. The multivariate analysis performed using diversity, dominance and richness indexes, and environmental data evidenced a seasonal pattern in the archaeal community and revealed that spring–summer samples clustered separately from autumn to winter ones. High salinity and high values of diversity and richness were related to autumn–winter samples, whereas the spring–summer samples were associated mainly with higher values of temperature, SPM, Chl-a, carotenoids and archaeal dominance. The phylogenetic analysis of five independent clone libraries (467 sequences) showed that 448 sequences fell into a clade containing Nitrosopumilus maritimus and other sequences of ammonia-oxidizing archaea which belong to the Thaumarchaeota phylum. A high fraction of these sequences (62 %) constituted a single cluster containing only highly similar Potter Cove representatives, which probably belong to the same species. Fifteen sequences were affiliated to a group closely related to the order Thermoplasmatales (Euryarchaeota). This work represents a first step towards obtaining a deep understanding of the structure of archaeal communities from Antarctic coastal marine environments and contributes to cover the current gap in knowledge of the dynamics of the archaeoplankton in the Antarctic seas.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Amano-Sato C, Akiyama S, Uchida M, Shimada K, Utsumi M (2013) Archaeal distribution and abundance in water masses of the Arctic Ocean, Pacific sector. Aquat Microb Ecol 69:101–112

  2. Bano N, Ruffin S, Ransom B, Hollibaugh JT (2004) Phylogenetic composition of Arctic Ocean archaeal assemblages and comparison with Antarctic assemblages. Appl Environ Microbiol 70:781–789

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  3. Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245–252

    CAS  PubMed  Article  Google Scholar 

  4. Brochier-Armanet C, Gribaldo S, Forterre P (2012) Spotlight on the Thaumarchaeota. ISME J 6:227–230

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  5. Church MJ, DeLong EF, Ducklow HW, Karner MB, Preston CM, Karl DM (2003) Abundance and distribution of planktonic Archaea and Bacteria in the waters west of the Antarctic Peninsula. Limnol Oceanogr 48:1893–1902

    Article  Google Scholar 

  6. Collins RE, Rocap G, Deming JW (2010) Persistence of bacterial and archaeal communities in sea ice through an Arctic winter. Environ Microbiol 12:1828–1841

  7. Cowie ROM, Masa EW, Ryan KG (2010) Archaeal diversity revealed in Antarctic sea ice. Antarct Sci 23:531–536

    Article  Google Scholar 

  8. Curtosi A, Pelletier E, Vodopivez CL, Mac Cormack WP (2007) Distribution pattern of PAHs in soil and surface marine sediments near Jubany Station (Antarctica). Possible role of permafrost as a low-permeability barrier. Sci Total Environ 383:193–204

    CAS  PubMed  Article  Google Scholar 

  9. DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  10. DeLong EF, Wu KY, Prezelin BB, Jovine RVM (1994) High abundance of Archaea in Antarctic marine picoplankton. Nature 371:695–697

    CAS  PubMed  Article  Google Scholar 

  11. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2001) InfoStat versión 2011. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar

  12. Ferrari VC, Hollibaugh T (1999) Distribution of microbial assemblages in the central Arctic Ocean basin studied by PCR/DGGE: analysis of a large data set. Hydrobiologia 401:55–68

    CAS  Article  Google Scholar 

  13. Fuenets VL, Schnack-Schiel SB, Schloss IR, Esnal GG (2008) Mesozooplankton of Potter Cove: community composition and seasonal distribution in 2002–2003. Rep Pol Mar Res 571:75–84

    Google Scholar 

  14. Fuhrman J, Hagström Å (2008) Bacterial and archaeal community structure and its patterns. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley, Hoboken, pp 45–90

    Google Scholar 

  15. Galand PE, Lovejoy C, Pouliot J, Vincent WF (2008) Heterogeneous archaeal communities in the particle-rich environment of an arctic shelf ecosystem. J Mar Syst 74:774–782

    Article  Google Scholar 

  16. Hallam SJ, Mincer TJ, Schleper C, Preston CM, Roberts K, Richardson PM, DeLong EF (2006) Pathways of carbon assim-ilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biol 4:520–536, E95. doi:10.1371/journal.pbio.0040095

  17. Herfort L, Schouten S, Abbas B, Veldhui MJW, Coolen MJL, Wuchter C (2007) Variations in spatial and temporal distribution of Archaea in the North Sea in relation to environmental variables. FEMS Microbiol Ecol 62:242–257

    CAS  PubMed  Article  Google Scholar 

  18. Holland SM (2003) Analytic rarefaction. See http://www.uga.edu/strata/software/

  19. Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon, a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319

    CAS  PubMed  Article  Google Scholar 

  20. Iino T, Mori K, Suzuki K (2010) Methanospirillum lacunae sp. Nov., a methane-producing archaeon isolated from a puddly soil, and emended descriptions of the genus Methanospirillum and Methanospirillum hungatei. Int J Syst Evol Microbiol 60:2563–2566

    CAS  PubMed  Article  Google Scholar 

  21. Ingalls AE, Shah SR, Hansman RL, Aluwihare LI, Santos GM, Druffel ER, Pearson A (2006) Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon. Proc Nat Acad Sci USA 103:6442–6447

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  22. JGI (Joint Genome Institute) (2013) https://img.jgi.doe.gov/cgi-bin/mer/main.cgi?section=TaxonDetail&page=taxonDetail&taxon_oid=3300000136

  23. Kalanetra KM, Bano N, Hollibaugh JT (2009) Ammonia-oxidizing Archaea in the Arctic Ocean and Antarctic coastal waters. Environ Microbiol 11:2434–2445

    CAS  PubMed  Article  Google Scholar 

  24. Karner MB, DeLong EF, Karl DM (2001) Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409:507–510

    CAS  PubMed  Article  Google Scholar 

  25. Lin X, Kennedy D, Fredrickson J, Bjornstad B, Konopka A (2012) Vertical stratification of subsurface microbial community composition across geological formations at the Hanford Site. Environ Microbiol 14:414–425

    CAS  PubMed  Article  Google Scholar 

  26. Lorenzen CJ (1967) Determination of chlorophyll and phaeopigments: spectrophotometric equations. Limnol Oceanogr 12:343–346

    CAS  Article  Google Scholar 

  27. Massana R, Taylor LT, Murray AE, Wu KY, Jeffrey WH, DeLong EF (1998) Vertical distribution and temporal variation of marine planktonic archaea in the Gerlache Strait, Antarctica, during early spring. Limnol Oceanogr 43:607–617

    CAS  Article  Google Scholar 

  28. Murray AE, Preston CM, Massana R, Taylor LT, Blakis A, Wu K, DeLong EF (1998) Seasonal and spatial variability of Bacterial and Archaeal assemblages in the coastal waters near Anvers Island, Antarctica. Appl Environ Microbiol 64:2585–2595

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rDNA. Appl Environ Microb 59:695–700

    CAS  Google Scholar 

  30. Muyzer G, Brinkhoff T, Nübel U, Santegoeds C, Schäfer H, Wawer C (2004) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. In: Kowalchuk GA, de Bruin FJ, Head IM, Akkermans DL, Van Elsas JD (eds) Molecular microbial ecology manual. Kluwer, Dordrecht, pp 743–770

    Google Scholar 

  31. Pester M, Schleper C, Wagner M (2011) The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Curr Opin Microbiol 14:300–306

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  32. Piquet AM-T, Bolhuis H, Davidson AT, Thomson PG, Buma AGJ (2008) Diversity and dynamics of Antarctic marine microbial eukaryotes under manipulated environmental UV radiation. FEMS Microbiol Ecol 66:352–366

    CAS  PubMed  Article  Google Scholar 

  33. Piquet AM-T, Bolhuis H, Davidson AT, Buma AG (2010) Seasonal succession and UV sensitivity of marine bacterioplankton at an Antarctic coastal site. FEMS Microbiol Ecol 73:68–82

    CAS  PubMed  Google Scholar 

  34. Quartino ML, Boraso de Zaixso AL (2008) Summer macroalgal biomass in Potter Cove, South Shetland Islands, Antarctica: its production and flux to the ecosystem. Pol Biol 31:281–294

    Article  Google Scholar 

  35. Raskin L, Stromley JM, Rittmann BE, Stahl DA (1994) Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol 60:1232–1240

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Schleper C, Jurgens G, Jonuscheit M (2005) Genomic studies of uncultivated Archaea. Nat Rev Microbiol 3:479–488

    CAS  PubMed  Article  Google Scholar 

  37. Schloss IR, Ferreyra GA (2002) Primary production, Light and vertical mixing in Potter Cove, a shallow bay in the maritime Antractica. Pol Biol 25:41–48

    Article  Google Scholar 

  38. Schloss IR, Ferreyra GA, Ruiz-Pino D (2002) Phytoplankton biomass in Antarctic shelf zones: a conceptual model based on Potter Cove, King George Island. J Mar Syst 36:129–143

    Article  Google Scholar 

  39. Schloss IR, Abele D, Demers S, Bers V, González O, Ferreyra GA (2012) Response of phytoplankton dynamics to 19-year (1991–2009) climate trends in PotterCove (Antarctica). J Mar Syst 92:53–66

    Article  Google Scholar 

  40. Strickland JDH, Parsons TR (1968) A practical handbook of seawater analysis. Pigment analysis, Bull Fish Res Bd, Otawa, Canada, 167, 311 pp

  41. Strickland JDH, Parsons DR (1972) A practical handbook of seawater analysis. J Fish Res Board Can Bull 167:1–310

    Google Scholar 

  42. Wuchter C, Abbas B, Coolen MJL, Herfort L, van Bleijswijk J, Timmers P (2006) Archaeal nitrification in the ocean. Proc Natl Acad Sci USA 103:12317–12322

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  43. Zehr J, Ward BB (2002) Nitrogen Cycling in the Ocean: new perspectives on processes and paradigms. Appl Environ Microbiol 79:1015–1024

    Article  Google Scholar 

Download references

Acknowledgments

This research was carried out under an agreement between the Instituto Antártico Argentino and the Facultad de Farmacia y Bioquímica of the Universidad de Buenos Aires. This work was supported by grants PICTO 2010-0124 from the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) and UBA 20020100100378 from Universidad de Buenos Aires. Also we had the financial support from the European Commission through the Marie Curie Action IRSES, project no 318718, IMCONet (Interdisciplinary Modelling of climate change in coastal Western Antarctica—Network for staff Exchange and Training). We thank Gustavo Latorre, Gastón Aguirre and Oscar Gonzalez for their technical assistance and Cecilia Ferreiro for the correction of the English manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Walter P. Mac Cormack.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Annual variation of chlorophyll a in Potter Cove. E1 (inner cove), E2 (outer cove), E3 (mouth of Potter Creek) (TIFF 44 kb)

Annual variation of carotenoids in Potter Cove. E1 (inner cove), E2 (outer cove), E3 (mouth of Potter Creek) (TIFF 42 kb)

Annual variation of phaeopigments in Potter Cove. E1 (inner cove), E2 (outer cove), E3 (mouth of Potter Creek) (TIFF 42 kb)

Annual variation of suspended particulate matter (SPM) in Potter Cove. E1 (inner cove), E2 (outer cove), E3 (mouth of Potter Creek) (TIFF 38 kb)

Annual variation of temperature in Potter Cove. E1 (inner cove), E2 (outer cove), E3 (mouth of Potter Creek) (TIFF 35 kb)

Annual variation of salinity in Potter Cove. E1 (inner cove), E2 (outer cove), E3 (mouth of Potter Creek) (TIFF 35 kb)

Rarefaction curves of the archaeal 16S rRNA sequences from Potter Cove sea waters at 97 % identity. a) Rarefaction curve from 5 combined libraries, b) rarefaction curves from each library. The total number of sequenced clones is plotted against the number of OTUs observed in the same library (TIFF 194 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hernández, E.A., Piquet, A.M., Lopez, J.L. et al. Marine archaeal community structure from Potter Cove, Antarctica: high temporal and spatial dominance of the phylum Thaumarchaeota. Polar Biol 38, 117–130 (2015). https://doi.org/10.1007/s00300-014-1569-8

Download citation

Keywords

  • Antarctic Peninsula
  • 16S rDNA
  • DGGE
  • Marine archaea