Polar Biology

, Volume 38, Issue 2, pp 117–130 | Cite as

Marine archaeal community structure from Potter Cove, Antarctica: high temporal and spatial dominance of the phylum Thaumarchaeota

  • Edgardo A. Hernández
  • Anouk M.-T. Piquet
  • José L. Lopez
  • Anita G. J. Buma
  • Walter P. Mac CormackEmail author
Original Paper


Archaeal communities represent a significant fraction of the Antarctic marine microbial plankton and surely play a relevant role in the proper functioning of the ecosystem. We studied the archaeal community structure in surface water samples from Potter Cove, Antarctica. Temporal and spatial variability was investigated along a whole year cycle using DGGE and 16S rRNA gene sequencing from clone libraries. Additionally, photosynthetic pigments, suspended particulate matter (SPM), salinity and temperature were measured. The multivariate analysis performed using diversity, dominance and richness indexes, and environmental data evidenced a seasonal pattern in the archaeal community and revealed that spring–summer samples clustered separately from autumn to winter ones. High salinity and high values of diversity and richness were related to autumn–winter samples, whereas the spring–summer samples were associated mainly with higher values of temperature, SPM, Chl-a, carotenoids and archaeal dominance. The phylogenetic analysis of five independent clone libraries (467 sequences) showed that 448 sequences fell into a clade containing Nitrosopumilus maritimus and other sequences of ammonia-oxidizing archaea which belong to the Thaumarchaeota phylum. A high fraction of these sequences (62 %) constituted a single cluster containing only highly similar Potter Cove representatives, which probably belong to the same species. Fifteen sequences were affiliated to a group closely related to the order Thermoplasmatales (Euryarchaeota). This work represents a first step towards obtaining a deep understanding of the structure of archaeal communities from Antarctic coastal marine environments and contributes to cover the current gap in knowledge of the dynamics of the archaeoplankton in the Antarctic seas.


Antarctic Peninsula 16S rDNA DGGE Marine archaea 



This research was carried out under an agreement between the Instituto Antártico Argentino and the Facultad de Farmacia y Bioquímica of the Universidad de Buenos Aires. This work was supported by grants PICTO 2010-0124 from the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) and UBA 20020100100378 from Universidad de Buenos Aires. Also we had the financial support from the European Commission through the Marie Curie Action IRSES, project no 318718, IMCONet (Interdisciplinary Modelling of climate change in coastal Western Antarctica—Network for staff Exchange and Training). We thank Gustavo Latorre, Gastón Aguirre and Oscar Gonzalez for their technical assistance and Cecilia Ferreiro for the correction of the English manuscript.

Supplementary material

300_2014_1569_MOESM1_ESM.tif (44 kb)
Annual variation of chlorophyll a in Potter Cove. E1 (inner cove), E2 (outer cove), E3 (mouth of Potter Creek) (TIFF 44 kb)
300_2014_1569_MOESM2_ESM.tif (42 kb)
Annual variation of carotenoids in Potter Cove. E1 (inner cove), E2 (outer cove), E3 (mouth of Potter Creek) (TIFF 42 kb)
300_2014_1569_MOESM3_ESM.tif (43 kb)
Annual variation of phaeopigments in Potter Cove. E1 (inner cove), E2 (outer cove), E3 (mouth of Potter Creek) (TIFF 42 kb)
300_2014_1569_MOESM4_ESM.tif (39 kb)
Annual variation of suspended particulate matter (SPM) in Potter Cove. E1 (inner cove), E2 (outer cove), E3 (mouth of Potter Creek) (TIFF 38 kb)
300_2014_1569_MOESM5_ESM.tif (35 kb)
Annual variation of temperature in Potter Cove. E1 (inner cove), E2 (outer cove), E3 (mouth of Potter Creek) (TIFF 35 kb)
300_2014_1569_MOESM6_ESM.tif (35 kb)
Annual variation of salinity in Potter Cove. E1 (inner cove), E2 (outer cove), E3 (mouth of Potter Creek) (TIFF 35 kb)
300_2014_1569_MOESM7_ESM.tif (195 kb)
Rarefaction curves of the archaeal 16S rRNA sequences from Potter Cove sea waters at 97 % identity. a) Rarefaction curve from 5 combined libraries, b) rarefaction curves from each library. The total number of sequenced clones is plotted against the number of OTUs observed in the same library (TIFF 194 kb)


  1. Amano-Sato C, Akiyama S, Uchida M, Shimada K, Utsumi M (2013) Archaeal distribution and abundance in water masses of the Arctic Ocean, Pacific sector. Aquat Microb Ecol 69:101–112Google Scholar
  2. Bano N, Ruffin S, Ransom B, Hollibaugh JT (2004) Phylogenetic composition of Arctic Ocean archaeal assemblages and comparison with Antarctic assemblages. Appl Environ Microbiol 70:781–789PubMedCentralPubMedCrossRefGoogle Scholar
  3. Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245–252PubMedCrossRefGoogle Scholar
  4. Brochier-Armanet C, Gribaldo S, Forterre P (2012) Spotlight on the Thaumarchaeota. ISME J 6:227–230PubMedCentralPubMedCrossRefGoogle Scholar
  5. Church MJ, DeLong EF, Ducklow HW, Karner MB, Preston CM, Karl DM (2003) Abundance and distribution of planktonic Archaea and Bacteria in the waters west of the Antarctic Peninsula. Limnol Oceanogr 48:1893–1902CrossRefGoogle Scholar
  6. Collins RE, Rocap G, Deming JW (2010) Persistence of bacterial and archaeal communities in sea ice through an Arctic winter. Environ Microbiol 12:1828–1841Google Scholar
  7. Cowie ROM, Masa EW, Ryan KG (2010) Archaeal diversity revealed in Antarctic sea ice. Antarct Sci 23:531–536CrossRefGoogle Scholar
  8. Curtosi A, Pelletier E, Vodopivez CL, Mac Cormack WP (2007) Distribution pattern of PAHs in soil and surface marine sediments near Jubany Station (Antarctica). Possible role of permafrost as a low-permeability barrier. Sci Total Environ 383:193–204PubMedCrossRefGoogle Scholar
  9. DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689PubMedCentralPubMedCrossRefGoogle Scholar
  10. DeLong EF, Wu KY, Prezelin BB, Jovine RVM (1994) High abundance of Archaea in Antarctic marine picoplankton. Nature 371:695–697PubMedCrossRefGoogle Scholar
  11. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2001) InfoStat versión 2011. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.
  12. Ferrari VC, Hollibaugh T (1999) Distribution of microbial assemblages in the central Arctic Ocean basin studied by PCR/DGGE: analysis of a large data set. Hydrobiologia 401:55–68CrossRefGoogle Scholar
  13. Fuenets VL, Schnack-Schiel SB, Schloss IR, Esnal GG (2008) Mesozooplankton of Potter Cove: community composition and seasonal distribution in 2002–2003. Rep Pol Mar Res 571:75–84Google Scholar
  14. Fuhrman J, Hagström Å (2008) Bacterial and archaeal community structure and its patterns. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley, Hoboken, pp 45–90CrossRefGoogle Scholar
  15. Galand PE, Lovejoy C, Pouliot J, Vincent WF (2008) Heterogeneous archaeal communities in the particle-rich environment of an arctic shelf ecosystem. J Mar Syst 74:774–782CrossRefGoogle Scholar
  16. Hallam SJ, Mincer TJ, Schleper C, Preston CM, Roberts K, Richardson PM, DeLong EF (2006) Pathways of carbon assim-ilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biol 4:520–536, E95. doi: 10.1371/journal.pbio.0040095
  17. Herfort L, Schouten S, Abbas B, Veldhui MJW, Coolen MJL, Wuchter C (2007) Variations in spatial and temporal distribution of Archaea in the North Sea in relation to environmental variables. FEMS Microbiol Ecol 62:242–257PubMedCrossRefGoogle Scholar
  18. Holland SM (2003) Analytic rarefaction. See
  19. Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon, a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319PubMedCrossRefGoogle Scholar
  20. Iino T, Mori K, Suzuki K (2010) Methanospirillum lacunae sp. Nov., a methane-producing archaeon isolated from a puddly soil, and emended descriptions of the genus Methanospirillum and Methanospirillum hungatei. Int J Syst Evol Microbiol 60:2563–2566PubMedCrossRefGoogle Scholar
  21. Ingalls AE, Shah SR, Hansman RL, Aluwihare LI, Santos GM, Druffel ER, Pearson A (2006) Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon. Proc Nat Acad Sci USA 103:6442–6447PubMedCentralPubMedCrossRefGoogle Scholar
  22. Kalanetra KM, Bano N, Hollibaugh JT (2009) Ammonia-oxidizing Archaea in the Arctic Ocean and Antarctic coastal waters. Environ Microbiol 11:2434–2445PubMedCrossRefGoogle Scholar
  23. Karner MB, DeLong EF, Karl DM (2001) Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409:507–510PubMedCrossRefGoogle Scholar
  24. Lin X, Kennedy D, Fredrickson J, Bjornstad B, Konopka A (2012) Vertical stratification of subsurface microbial community composition across geological formations at the Hanford Site. Environ Microbiol 14:414–425PubMedCrossRefGoogle Scholar
  25. Lorenzen CJ (1967) Determination of chlorophyll and phaeopigments: spectrophotometric equations. Limnol Oceanogr 12:343–346CrossRefGoogle Scholar
  26. Massana R, Taylor LT, Murray AE, Wu KY, Jeffrey WH, DeLong EF (1998) Vertical distribution and temporal variation of marine planktonic archaea in the Gerlache Strait, Antarctica, during early spring. Limnol Oceanogr 43:607–617CrossRefGoogle Scholar
  27. Murray AE, Preston CM, Massana R, Taylor LT, Blakis A, Wu K, DeLong EF (1998) Seasonal and spatial variability of Bacterial and Archaeal assemblages in the coastal waters near Anvers Island, Antarctica. Appl Environ Microbiol 64:2585–2595PubMedCentralPubMedGoogle Scholar
  28. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rDNA. Appl Environ Microb 59:695–700Google Scholar
  29. Muyzer G, Brinkhoff T, Nübel U, Santegoeds C, Schäfer H, Wawer C (2004) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. In: Kowalchuk GA, de Bruin FJ, Head IM, Akkermans DL, Van Elsas JD (eds) Molecular microbial ecology manual. Kluwer, Dordrecht, pp 743–770Google Scholar
  30. Pester M, Schleper C, Wagner M (2011) The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Curr Opin Microbiol 14:300–306PubMedCentralPubMedCrossRefGoogle Scholar
  31. Piquet AM-T, Bolhuis H, Davidson AT, Thomson PG, Buma AGJ (2008) Diversity and dynamics of Antarctic marine microbial eukaryotes under manipulated environmental UV radiation. FEMS Microbiol Ecol 66:352–366PubMedCrossRefGoogle Scholar
  32. Piquet AM-T, Bolhuis H, Davidson AT, Buma AG (2010) Seasonal succession and UV sensitivity of marine bacterioplankton at an Antarctic coastal site. FEMS Microbiol Ecol 73:68–82PubMedGoogle Scholar
  33. Quartino ML, Boraso de Zaixso AL (2008) Summer macroalgal biomass in Potter Cove, South Shetland Islands, Antarctica: its production and flux to the ecosystem. Pol Biol 31:281–294CrossRefGoogle Scholar
  34. Raskin L, Stromley JM, Rittmann BE, Stahl DA (1994) Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol 60:1232–1240PubMedCentralPubMedGoogle Scholar
  35. Schleper C, Jurgens G, Jonuscheit M (2005) Genomic studies of uncultivated Archaea. Nat Rev Microbiol 3:479–488PubMedCrossRefGoogle Scholar
  36. Schloss IR, Ferreyra GA (2002) Primary production, Light and vertical mixing in Potter Cove, a shallow bay in the maritime Antractica. Pol Biol 25:41–48CrossRefGoogle Scholar
  37. Schloss IR, Ferreyra GA, Ruiz-Pino D (2002) Phytoplankton biomass in Antarctic shelf zones: a conceptual model based on Potter Cove, King George Island. J Mar Syst 36:129–143CrossRefGoogle Scholar
  38. Schloss IR, Abele D, Demers S, Bers V, González O, Ferreyra GA (2012) Response of phytoplankton dynamics to 19-year (1991–2009) climate trends in PotterCove (Antarctica). J Mar Syst 92:53–66CrossRefGoogle Scholar
  39. Strickland JDH, Parsons TR (1968) A practical handbook of seawater analysis. Pigment analysis, Bull Fish Res Bd, Otawa, Canada, 167, 311 ppGoogle Scholar
  40. Strickland JDH, Parsons DR (1972) A practical handbook of seawater analysis. J Fish Res Board Can Bull 167:1–310Google Scholar
  41. Wuchter C, Abbas B, Coolen MJL, Herfort L, van Bleijswijk J, Timmers P (2006) Archaeal nitrification in the ocean. Proc Natl Acad Sci USA 103:12317–12322PubMedCentralPubMedCrossRefGoogle Scholar
  42. Zehr J, Ward BB (2002) Nitrogen Cycling in the Ocean: new perspectives on processes and paradigms. Appl Environ Microbiol 79:1015–1024CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Edgardo A. Hernández
    • 1
    • 4
  • Anouk M.-T. Piquet
    • 2
  • José L. Lopez
    • 3
  • Anita G. J. Buma
    • 2
  • Walter P. Mac Cormack
    • 1
    • 4
    Email author
  1. 1.Departamento de Microbiología AmbientalInstituto Antártico ArgentinoCiudad Autónoma de Buenos AiresArgentina
  2. 2.Department of Ocean Ecosystems, Energy and Sustainability Research InstituteUniversity of GroningenGroningenThe Netherlands
  3. 3.Cátedra de Virología, Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresCiudad Autónoma de Buenos AiresArgentina
  4. 4.Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología e Instituto de Nanobiotecnología UBA-CONICETUniversidad de Buenos AiresCiudad Autónoma de Buenos AiresArgentina

Personalised recommendations