Skip to main content

Advertisement

Log in

Variation of scavenger richness and abundance between sites of high and low iceberg scour frequency in Ryder Bay, west Antarctic Peninsula

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Physical disturbance, particularly from iceberg scour, is a major structuring force in polar benthic communities at shelf depths. Scouring kills and damages benthic organisms providing food for the abundant scavenging fauna of coastal Antarctic waters. This trophic group is likely to be strongly affected by changes in iceberg scouring. A baited underwater camera system was used to examine the distribution of scavenging fauna in relation to the spatial variation in exposure to iceberg impacts experienced at different iceberg scouring conditions and depths within Ryder Bay. The results indicate that the relationships between depth and scavenger abundance and assemblage composition differed between high and low scour sites. Scavenger abundance increased with depth at high scour sites and fell with depth a low scour sites. There was also significant difference in community composition between sites within each scouring condition. Scavenger species richness also exhibited an increase with depth at most sites consistent with the established pattern of declining iceberg scouring frequency with depth. Shannon–Wiener diversity increased with depth but significantly more steeply in highly scoured sites. Our results suggest that depth and exposure to icebergs interact to shape the scavenger community. The significant differences within the high and low scour groups suggest that other factors remain to be investigated and that there is probably a nonlinear relationship between scouring intensity and the favourability of a site for scavengers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson MJ (2001) A new method for non-parametric multivarate analysis of variance. Aust Ecol 26:32–46. doi:10.1111/j.1442-9993.2001.01070.pp.x

    Google Scholar 

  • Anderson M, Gorley RN, Clarke RK (2008) Permanova+ for primer: guide to software and statistical methods. PRIMER-E, Plymouth

    Google Scholar 

  • Bailey DM, Wagner HJ, Jamieson AJ, Ross MF, Priede IG (2007) A taste of the deep-sea: the roles of gustatory and tactile searching behaviour in the grenadier fish Coryphaenoides armatus. Deep Sea Res Part II 54:99–108. doi:10.1016/j.dsr.2006.10.005

    Article  Google Scholar 

  • Barnes DKA (1995) Seasonal and annual growth in erect species of Antarctic bryozoans. J Exp Mar Biol Ecol 188:181–198. doi:10.1016/0022-0981(95)00003-A

    Article  Google Scholar 

  • Barnes DKA (1999) The influence of ice on polar nearshore benthos. J Mar Biol Assoc UK 79:401–407

    Article  Google Scholar 

  • Barnes DKA, Conlan KE (2007) Disturbance, colonization and development of Antarctic benthic communities. Philos Trans R Soc B 362:11–38. doi:10.1098/rstb.2006.1951

    Article  Google Scholar 

  • Barnes DKA, Conlan KE (2012) The dynamic mosaic. In: Rogers AD, Johnston MD, Murphy EJ, Clarke A (eds) Antarctic ecosystems: an extreme environment in a changing world. Wiley and Blackwell Publishing Ltd, Chichester, pp 255–290

    Chapter  Google Scholar 

  • Barnes DK, Souster T (2011) Reduced survival of Antarctic benthos linked to climate-induced iceberg scouring. Nature Clim Change 1:365–368. doi:10.1038/nclimate1232

  • Bergeron P, Bourget E (1986) Shore topography and spatial partitioning of crevice refuges by sessile epibenthos in an ice disturbed environment. Mar Ecol Prog Ser 28:129–145

    Article  Google Scholar 

  • Bowden DA, Clarke A, Peck LS, Barnes DKA (2006) Antarctic sessile marine benthos: colonisation and growth on artificial substrata over three years. Mar Ecol Prog Ser 316:1–16

    Article  Google Scholar 

  • Britton JC, Morton B (1994) Marine carrion and scavengers. Oceanogr Mar Biol 32:369–434

    Google Scholar 

  • Brown KM, Fraser KPP, Barnes DKA, Peck LS (2004) Links between the structure of an Antarctic shallow-water community and ice-scour frequency. Oecologia 141:121–129. doi:10.1007/s00442-004-1648-6

    Article  PubMed  Google Scholar 

  • Clarke A, Johnston NM (2003) Antarctic marine benthic diversity. Oceanogr Mar Biol Ann Rev 41:47–114

    Google Scholar 

  • Conlan KE, Kvitek RG (2005) Recolonization of soft-sediment ice scours on an exposed Arctic coast. Mar Ecol Prog Ser 286:21–42. doi:10.3354/meps286021

    Article  Google Scholar 

  • Cranmer TL, Ruhl HA, Baldwin RJ, Kaufmann RS (2003) Spatial and temporal variation in the abundance, distribution and population structure of epibenthic megafauna in Port Foster, Deception Island. Deep Sea Res Part II 50:1821–1842. doi:10.1016/S0967-0645(03)00093-6

    Article  Google Scholar 

  • Dayton PK (1989) Interdecadal variation in an Antarctic sponge and its predators from oceanographic climate shifts. Science 243:1484–1486

    Article  Google Scholar 

  • Dayton PK, Mordida BH, Bacon F (1994) Polar marine communities. Am Zool 34:90–99

    Google Scholar 

  • Dowdeswell JA, Villinger H, Whittington RJ, Marienfeld P (1993) Iceberg scouring in Scoresby Sund and on the East Greenland continental shelf. Mar Geol 111:37–53. doi:10.1016/0025-3227(93)90187-Z

    Article  Google Scholar 

  • Gerdes D, Hilbig B, Montiel A (2003) Impact of iceberg scouring on macrobenthic communities in the high-Antarctic Weddell Sea. Polar Biol 26:295–301. doi:10.1007/s00300-003-0484-1

    Google Scholar 

  • Gillies CL, Stark JS, Johnstone GJ, Smith SDA (2012) Carbon flow and trophic structure of an Antarctic coastal benthic community as determined by delta C-13 and delta N-15. Estuar Coast Shelf Sci 97:44–57. doi:10.1016/j.ecss.2011.11.003

    Article  CAS  Google Scholar 

  • Gutt J (2000) Some driving forces structuring communities of the sublittoral Antarctic macrobenthos. Antarct Sci 12:297–313. doi:10.1017/S0954102000000365

    Article  Google Scholar 

  • Gutt J (2001) On the direct impact of ice on marine benthic communities: a review. Polar Biol 24:553–564. doi:10.1007/s003000100262

    Article  Google Scholar 

  • Gutt J, Piepenburg D (2003) Scale-dependent impact on diversity of Antarctic benthos caused by grounding of icebergs. Mar Ecol Prog Ser 253:77–83. doi:10.3354/meps253077

    Article  Google Scholar 

  • Gutt J, Starmans A, Dieckmann G (1996) Impact of iceberg scouring on polar benthic habitats. Mar Ecol Prog Ser 137:311–316

    Article  Google Scholar 

  • Harvey ES, Newman SJ, McLean DL, Cappo M, Meeuwig JJ, Skepper CL (2012) Comparison of the relative efficiencies of stereo-BRUVs and traps for sampling tropical continental shelf demersal fishes. Fish Res 125:108–120. doi:10.1016/j.fishres.2012.01.026

  • Heine JN, McClintock JB, Slattery M, Weston J (1991) Energetic composition, biomass, and chemical defense in the common antarctic nemertean Parborlasia corrugatus (Mcintosh). J Exp Mar Biol Ecol 153:15–25. doi:10.1016/S0022-0981(05)80003-6

    Article  Google Scholar 

  • Hequette A, Tremblay P, Hill PR (1999) Nearshore erosion by combined ice scouring and near-bottom currents in Eastern Hudson Bay, Canada. Mar Geol 158:253–266. doi:10.1016/S0025-3227(98)00164-9

    Article  Google Scholar 

  • Kidawa A (2001) Antarctic starfish, Odontaster validus, distinguish between fed and starved conspecifics. Polar Biol 24:408–410. doi:10.1007/s003000100229

    Article  Google Scholar 

  • Koplovitz G, McClintock JB, Amsler CD, Baker BJ (2009) Palatability and chemical anti-predatory defenses in common ascidians from the Antarctic Peninsula. Aquat Biol 7:81–92. doi: 10.3354/ab00188

  • Lenihan HS, Oliver JS (1995) Anthropogenic and natural disturbances to marine benthic communities in Antarctica. Ecol Appl 5:311–326

    Article  Google Scholar 

  • McClintock JB (1994) Trophic biology of Antarctic shallow-water echinoderms. Mar Ecol Prog Ser 111:191–202

    Article  Google Scholar 

  • McClintock JB, Pearse JS (1986) Organic and energetic content of eggs and juveniles of antarctic echinoids and asteriods with lecithotrophic development. Comp Biochem Phys A 85:341–345. doi:10.1016/0300-9629(86)90259-8

  • Nonato EF, Brito TAS, De Paiva PC, Petti MAV, Corbisier TN (2000) Benthic megafauna of the nearshore zone of Martel Inlet (King George Island, South Shetland Islands, Antarctica): depth zonation and underwater observations. Polar Biol 23:580–588. doi:10.1007/s003000000129

    Article  Google Scholar 

  • Obermueller BE, Morley SA, Barnes DKA, Peck LS (2010) Seasonal physiology and ecology of Antarctic marine benthic predators and scavengers. Mar Ecol Prog Ser 415:109–126. doi:10.3354/meps08735

    Article  Google Scholar 

  • Palma AT, Poulin E, Silva MG, San Martin RB, Munoz CA, Diaz AD (2007) Antarctic shallow subtidal echinoderms: is the ecological success of broadcasters related to ice disturbance? Polar Biol 30:343–350. doi:10.1007/s00300-006-0190-x

    Article  Google Scholar 

  • Pearse JS (1969) Slow developing demersal embryos and larvae of the Antarctic sea star Odontaster validus. Mar Biol 3:110–116. doi:10.1007/BF00353429

  • Pearse JS, McClintock JB, Bosch I (1991) Reproduction of Antarctic benthic marine-invertebrates—tempos, modes, and timing. Am Zool 31:65–80. doi:10.1093/icb/31.1.65

    Google Scholar 

  • Peck LS, Bullough LW (1993) Growth and population structure in the infaunal bivalve Yoldia eightsi in relation to iceberg activity at Signy Island, Antarctica. Mar Biol 117:235–241. doi:10.1007/BF00345668

    Article  Google Scholar 

  • Peck LS, Brockington S, Vanhove S, Beghyn M (1999) Community recovery following catastrophic iceberg impacts in a soft-sediment shallow-water site at Signy Island, Antarctica. Mar Ecol Prog Ser 186:1–8. doi:10.3354/meps18600

    Article  Google Scholar 

  • Priede IG, Smith KL, Armstrong JD (1990) Foraging behaviour of abyssal grenadier fish: inferences from acoustic tagging and tracking in the North Pacific. Deep Sea Res 37:81–101. doi:10.1016/0198-0149(90)90030-Y

    Article  Google Scholar 

  • Pugh PJA, Davenport J (1997) Colonisation vs. disturbance: the effects of sustained ice-scouring on intertidal communities. J Exp Mar Biol Ecol 210:1–21. doi:10.1016/S0022-0981(96)02711-6

    Article  Google Scholar 

  • Rachold V, Eicken H, Gordeev VV, Grigoriev MN, Hubberten HW, Lisitzin AP, Shevchenko VP, Schirrmeister L (2004) Modern terrigenous organic carbon input to the Arctic Ocean. In: Stein R, MacDonald RW (eds) The organic carbon cycle in the Arctic Ocean. Springer, Heidelberg, pp 33–55

    Chapter  Google Scholar 

  • Richardson MD, Hedgpeth JW (1977) Antarctic soft-bottom, macrobenthic community adaptations to a cold, stable, highly productive, glacially affected environment. In: Llano GE (ed) Adaptations within Antarctic ecosystems, Proceedings of the Third SCAR Symposium on Antarctic Biology. Gulf Publishing Company, Houston, pp 181–196

  • Sahade R, Tatian M, Kowalke J, Kuhne S, Esnal GB (1998) Benthic faunal associations on soft substrates at Potter Cove, King George Island, Antarctica. Polar Biol 19:85–91. doi:10.1007/s003000050218

    Article  Google Scholar 

  • Smale D (2008) Continuous benthic community change along a depth gradient in Antarctic shallows: evidence of patchiness but not zonation. Polar Biol 31:189–198. doi:10.1007/s00300-007-0346-3

    Article  Google Scholar 

  • Smale DA, Barnes DKA, Fraser KPP (2007a) The influence of depth, site exposure and season on the intensity of iceberg scouring in nearshore Antarctic waters. Polar Biol 30:769–779. doi:10.1007/s00300-006-0236-0

    Article  Google Scholar 

  • Smale DA, Barnes DKA, Fraser KPP (2007b) The influence of ice scour on benthic communities at three contrasting sites at Adelaide Island, Antarctica. Austral Ecol 32:878–888. doi:10.1111/j.1442-9993.2007.01776.x

    Article  Google Scholar 

  • Smale DA, Barnes DKA, Fraser KPP, Mann PJ, Brown MP (2007c) Scavenging in Antarctica: intense variation between sites and seasons in shallow benthic necrophagy. J Exp Mar Biol Ecol 349:405–417. doi:10.1016/j.jembe.2007.06.002

    Article  Google Scholar 

  • Smale DA, Brown KM, Barnes DKA, Fraser KPP, Clarke A (2008) Ice scour disturbance in Antarctic waters. Science 321:371. doi:10.1126/science.1158647

    Article  CAS  PubMed  Google Scholar 

  • Stoner AW, Ryer CH, Parker SJ, Auster PJ, Wakefield WW (2008) Evaluating the role of fish behavior in surveys conducted with underwater vehicles. Can J Fish Aquat Sci 65:1230–1243. doi:10.1139/F08-032

  • Teixido N, Garrabou J, Gutt J, Arntz WE (2004) Recovery in Antarctic benthos after iceberg disturbance: trends in benthic composition, abundance and growth forms. Mar Ecol Prog Ser 278:1–16

    Article  Google Scholar 

  • Thiel M, Kruse I (2001) Status of the Nemertea as predators in marine ecosystems. Hydrobiologia 456:21–32. doi:10.1023/A:1013005814145

    Article  Google Scholar 

  • Whitaker TM (1982) Primary production of phytoplankton off Signy Island, South Orkneys, the Antarctic. P R Soc Lond B Biol 214:169–189

    Article  Google Scholar 

  • Willis TJ, Babcock RC (2000) A baited underwater video system for the determination of relative density of carnivorous reef fish. Mar Freshwater Res 51:755–763. doi:10.1071/MF00010

Download references

Acknowledgments

This work was supported by the Collaborative Gearing Scheme grant from the Natural Environmental Research Council and the British Antarctic Survey and a University of Glasgow Faculty Scholarship to KMD. We are grateful for the logistical support of the staff at Rothera research station, especially the diving and boating staff, and Marian Scott for her advice on the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine M. Dunlop.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dunlop, K.M., Barnes, D.K.A. & Bailey, D.M. Variation of scavenger richness and abundance between sites of high and low iceberg scour frequency in Ryder Bay, west Antarctic Peninsula. Polar Biol 37, 1741–1754 (2014). https://doi.org/10.1007/s00300-014-1558-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-014-1558-y

Keywords

Navigation