Polar Biology

, Volume 37, Issue 11, pp 1607–1619 | Cite as

Seaweed biodiversity in the south-western Antarctic Peninsula: surveying macroalgal community composition in the Adelaide Island/Marguerite Bay region over a 35-year time span

  • Alexandra Mystikou
  • Akira F. Peters
  • Aldo O. Asensi
  • Kyle I. Fletcher
  • Paul Brickle
  • Pieter van West
  • Peter Convey
  • Frithjof C. Küpper
Original Paper


The diversity of seaweed species of the south-western Antarctic Peninsula region is poorly studied, contrasting with the substantial knowledge available for the northern parts of the Peninsula. However, this is a key region affected by contemporary climate change. Significant consequences of this change include sea ice recession, increased iceberg scouring and increased inputs of glacial melt water, all of which can have major impacts on benthic communities. We present a baseline seaweed species checklist for the southern Adelaide Island and northern Marguerite Bay region, combining data obtained during a small number of surveys completed in 1973–1975 and a 6-week intensive diving-based field campaign in 2010–2011. Overall, with a total of 41 macroalgal species recorded (7 brown, 27 red, 6 green, 1 chrysophyte), the region is species-poor compared to the north of the Antarctic Peninsula, and even more so in comparison with the sub-Antarctic. The key canopy-forming species is Desmarestia menziesii, which is abundant in Antarctic Peninsula waters, but lacking in the sub-Antarctic. Himantothallus grandifolius, which is a common species further north in the Antarctic phytobenthos, was absent in our recent collections. This paper also reports the first record of Aplanochytrium sp. (Labyrinthulomycetes) from this part of Antarctica and in association with Elachista sp.


Aplanochytrium sp. Climate change Desmarestia menziesii Marine macroalgae Maritime Antarctic Ice recession 



We are grateful to the UK Natural Environment Research Council for funding to FCK, in particular through WP 4.5 of Oceans 2025 to the Scottish Association for Marine Science and through the Antarctic Funding Initiative Collaborative Gearing Scheme (grant CGS-70, 2010, to FCK and PC). PvW acknowledges funding from the BBSRC, NERC and the University of Aberdeen. PC is supported by NERC funding to the BAS core programme Ecosystems, while PB, AM and FCK would like to thank the Joint Nature Conservancy Council for funding support. We thank David Smyth, Jonathan James, John Withers and Terrie Souster (British Antarctic Survey) for support with diving operations around Rothera in December 2010 and January 2011, Matt von Tersch (BAS), Sharon Duggan (BAS) and Julia Kleinteich (University of Konstanz) for support with logistics and laboratory work while at Rothera. We are grateful to Konstantinos Tsiamis (Hellenic Centre for Marine Research, Anavyssos) for help with identifying seaweed specimens. We also thank Richard Moe for critically reading the manuscript, and three anonymous reviewers for helpful suggestions. Finally, special thanks are due to Dawn Shewring for support with algal culturing and molecular work.

Supplementary material

300_2014_1547_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1325 kb)


  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefPubMedCentralGoogle Scholar
  2. Amsler CD, McClintock JB, Baker BJ (2011) Amphipods exclude filamentous algae from the Western Antarctic Peninsula benthos: experimental evidence. Polar Biol 35:171–177. doi: 10.1007/s00300-011-1049-3 CrossRefGoogle Scholar
  3. Asensi AO, Küpper FC (2012) Seasonal periodicity and reproduction of brown algae (Phaeophyceae) at Puerto Deseado (Patagonia). Bot Mar 55:217–228. doi: 10.1515/bot-2012-0002 CrossRefGoogle Scholar
  4. Bahnweg G, Sparrow FK (1972) Aplanochytrium kerguelensis gen. nov. spec. nov., a new phycomycete from subantarctic waters. Arch Mikrobiol 81:45–49PubMedCrossRefGoogle Scholar
  5. Barnes DKA, Brockington S (2003) Zoobenthic biodiversity, biomass and abundance at Adelaide Island, Antarctica. Mar Ecol Prog Ser 249:145–155CrossRefGoogle Scholar
  6. Barnes DKA, Souster T (2011) Reduced survival of Antarctic benthos linked to climate-induced iceberg scouring. Nat Clim Chang 1:365–368. doi: 10.1038/nclimate1232 CrossRefGoogle Scholar
  7. Barnes DKA, Fenton M, Cordingley A (2014) Climate-linked iceberg activity massively reduces spatial competition in Antarctic shallow waters. Curr Biol 24:R553–R554. doi: 10.1371/journal.pone.0004385.8 PubMedCrossRefGoogle Scholar
  8. Convey P (2011) Antarctic terrestrial biodiversity in a changing world. Polar Biol 34:1629–1641CrossRefGoogle Scholar
  9. Convey P, Bindschadler RA, di Prisco G, Fahrbach E, Gutt J, Hodgson DA, Mayewski P, Summerhayes CP, Turner J (2009) Antarctic climate change and the environment. Antarct Sci 21:541–563Google Scholar
  10. Convey P, Barnes DKA, Griffiths HJ, Grant SM, Linse K, Thomas DN (2012) Biogeography and regional classifications of Antarctica. In: Rogers AD, Johnston NM, Murphy E, Clarke A (eds) An extreme environment in a changing world. Blackwell, Oxford, pp 471–491Google Scholar
  11. Damare V, Raghukumar S (2006) Morphology and physiology of the marine straminipilan fungi, the aplanochytrids isolated from the equatorial Indian Ocean. Indian J Marine Sci 35(4):326–340Google Scholar
  12. Damare V, Raghukumar S (2010) Association of the stramenopilan protists, the aplanochytrids, with zooplankton of the equatorial Indian Ocean. Marine Ecol Prog Ser 399:53–68Google Scholar
  13. Damare VS, Damare S, Ramanujam P, Meena RM, Raghukumar S (2013) Preliminary studies on the association between zooplankyon and the Stramenopilan fungi, aplachytrids. Microbial Ecol 65:955–963Google Scholar
  14. De Laca TE, Lipps JH (1976) Shallow-water marine associations, Antarctic Peninsula. Antarct J US 11:12–20Google Scholar
  15. Frenot Y, Chown SL, Whinam J, Selkirk PM, Convey P, Skotnicki M, Bergstrom DM (2005) Biological invasions in the Antarctic: extent, impacts and implications. Biol Rev Camb Philos Soc 80:45–72PubMedCrossRefGoogle Scholar
  16. Gachon CMM, Strittmatter M, Müller DG, Kleinteich J, Küpper FC (2009) Detection of differential host susceptibility to the marine oomycete pathogen Eurychasma dicksonii by real-time PCR: not all algae are equal. Appl Environ Microbiol 75:322–328. doi: 10.1128/AEM.01885-08 PubMedCrossRefPubMedCentralGoogle Scholar
  17. Gachon CMM, Sime-Ngando T, Strittmatter M, Chambouvet A, Kim GH (2010) Algal diseases: spotlight on a black box. Trends Plant Sci 15:633–640PubMedCrossRefGoogle Scholar
  18. Greenslade P, Potapov M, Russell D, Convey P (2012) Global collembola on Deception Island. J Insect Sci 12:111. doi: 10.1673/031.012.11101 PubMedCrossRefPubMedCentralGoogle Scholar
  19. Guiry MD, Guiry GM (2012). AlgaeBase. World-wide electronic publication. National University of Ireland, Galway. Accessed 20 Jan 2014. Retrieved from http://www.algaebase.org
  20. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98. Retrieved from http://www.mbio.ncsu.edu/BioEdit/bioedit.html
  21. Hommersand MH, Moe RL, Amsler CD, Fredericq S (2009) Notes on the systematics and biogeographical relationships of Antarctic and sub-Antarctic Rhodophyta with descriptions of four new genera and five new species. Bot Mar 52:509–534. doi: 10.1515/BOT.2009.081 CrossRefGoogle Scholar
  22. Kleinteich J, Wood SA, Küpper FC, Camacho A, Quesada A, Frickey T, Dietrich DR (2012) Temperature-related changes in polar cyanobacterial mat diversity and toxin production. Nat Clim Change 2:356–360. doi: 10.1038/nclimate1418 CrossRefGoogle Scholar
  23. Knowlton N, Jackson JBC (2008) Shifting baselines, local impacts, and global change on coral reefs. PLoS Biol 6:e54. doi: 10.1371/journal.pbio.0060054 PubMedCrossRefPubMedCentralGoogle Scholar
  24. Küpper FC, Müller DG (1999) Massive occurrence of the heterokont and fungal parasites Anisolpidium, Eurychasma and Chytridium in Pylaiella littoralis (Ectocarpales, Phaeophyceae). Nova Hedwigia 69:381–389Google Scholar
  25. Küpper FC, Feiters MC, Olofsson B, Kaiho T, Yanagida S, Zimmermann MB, Carpenter LJ, Luther GW III, Lu Z, Jonsson M, Kloo L (2011) Commemorating two centuries of iodine research: an interdisciplinary overview of current research. Angew Chem Int Ed Engl 50:11598–11620. doi: 10.1002/anie.201100028 PubMedCrossRefGoogle Scholar
  26. Lamb MI, Zimmerman MH (1977) Benthic marine algae of the Antarctic Peninsula. Antarct Res Ser 23:129–229Google Scholar
  27. Lane CE, Mayes C, Druehl LD, Saunders GW (2006) A multi-gene molecular investigation of the kelp (Laminariales, Phaeophyceae) supports substantial taxonomic re-organization. J Phycol 42:493–512. doi: 10.1111/j.1529-8817.2006.00204.x CrossRefGoogle Scholar
  28. Leander CA, Porter D (2001) The Labyrinthulomycota is comprised of three distinct lineages. Mycologia 93:459–464CrossRefGoogle Scholar
  29. Leander CA, Porter D, Leander BS (2004) Comparative morphology and molecular phylogeny of aplanochytrids (Labyrinthulomycota). Eur J Protistol 40:317–328. doi: 10.1016/j.ejop.2004.07.003 CrossRefGoogle Scholar
  30. Lin S-M, Fredericq S, Hommersand MH (2012) Molecular phylogeny and developmental studies of Apoglossum and Paraglossum (Delesseriaceae, Rhodophyta) with a description of Apoglosseae trib. nov. Eur J Phycol 47:366–383. doi: 10.1080/09670262.2012.719164 CrossRefGoogle Scholar
  31. Lynch HJ, Naveen R, Trathan PN, Fagan WF (2012) Spatially integrated assessment reveals widespread changes in penguin populations on the Antarctic Peninsula. Ecology 93:1367–1377PubMedCrossRefGoogle Scholar
  32. Meredith MP, King JC (2005) Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys Res Lett 32:1–5. doi: 10.1029/2005GL024042 Google Scholar
  33. Moe RL (1986) Notophycus fimbriatus (Solieriaceae), a new genus and species of marine Rhodophyceae from the Antarctic Peninsula. Phycologia 25:544–550. doi: 10.2216/i0031-8884-25-4-544.1 CrossRefGoogle Scholar
  34. Moe RL, DeLaca TE (1976) Occurrence of macroscopic algae along the Antarctic Peninsula. Antarct J US 11:20–24Google Scholar
  35. Moe RL, Silva PC (1977) Antarctic marine flora—uniquely devoid of kelp. Science 196:1206–1208PubMedCrossRefGoogle Scholar
  36. Moe RL, Silva PC (1981) Morphology and taxonomy of Himantothallus (including Phaeoglossum and Phyllogiga), an Antarctic member of the Desmarestiales (Phaeophyceae). J Phycol 17:15–29CrossRefGoogle Scholar
  37. Molina-Montenegro MA, Carrasco-Urra F, Rodrigo C, Convey P, Valladares F, Gianoli E (2012) Occurrence of the non-native annual bluegrass on the Antarctic mainland and its negative effects on native plants. Conserv Biol 26:717–723. doi: 10.1111/j.1523-1739.2012.01865.x PubMedCrossRefGoogle Scholar
  38. Moro I, Negrisolo E, Callegaro A, Andreoli C (2003) Aplanochytrium stocchinoi: a new Labyrinthulomycota from the Southern Ocean (Ross Sea, Antarctica). Protist 154:331–340PubMedCrossRefGoogle Scholar
  39. Müller DG, Ramirez ME (1994) Filamentous Brown Algae from the Juan Fernandez Archipelago (Chile): contribution of laboratory culture techniques to a phytogeographic survey. Bot Mar 37:205–211CrossRefGoogle Scholar
  40. Olech M, Chwedorzewska KJ (2011) Short note: the first appearance and establishment of an alien vascular plant in natural habitats on the forefield of a retreating glacier in Antarctica. Antarct Sci 23:153–154. doi: 10.1017/S0954102010000982 CrossRefGoogle Scholar
  41. Oliveira EC, Absher TM, Pellizzari FM, Oliveira MC (2009) The seaweed flora of Admiralty Bay, King George Island, Antarctic. Polar Biol 32:1639–1647. doi: 10.1007/s00300-009-0663-9 CrossRefGoogle Scholar
  42. Peck LS, Convey P, Barnes DKA (2006) Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Biol Rev Camb Philos Soc 81:75–109. doi: 10.1017/S1464793105006871 PubMedCrossRefGoogle Scholar
  43. Phillips N, Smith CM, Morden CW (2001) An effective DNA extraction protocol for brown algae. Phycol Res 49:97–102CrossRefGoogle Scholar
  44. Quartino M, Klöser H, Wiencke C, Schloss I (2001) Biomass and associations of benthic marine macroalgae from the inner Potter Cove (King George Island, Antarctica) related to depth and substrate. Polar Biol 24:349–355. doi: 10.1007/s003000000218 CrossRefGoogle Scholar
  45. Quartino ML, Deregibus D, Campana GL, Latorre GEJ, Momo FR (2013) Evidence of macroalgal colonization on newly ice-free areas following glacial retreat in Potter Cove (South Shetland Islands) Antarctica. PLoS One 8:e58223. doi: 10.1371/journal.pone.0058223 PubMedCrossRefPubMedCentralGoogle Scholar
  46. Skottsberg C (1907) Zur Kenntnis der subantarktischen und antarktischen Meeresalgen. I. Phaeophyceen.- Stockholm: Kungl. Boktryckeriet PA. Norstedt SönerGoogle Scholar
  47. Smale DA, Barnes DKA, Fraser KPP (2007) The influence of ice scour on benthic communities at three contrasting sites at Adelaide Island, Antarctica. Austral Ecol 32:878–888CrossRefGoogle Scholar
  48. Sørensen T (1948). A method of establishing groups of equal amplitude in plant sociology based on similarity of species content. In Kongelige Danske Videnskabernes Selskab. Biol. Skrifter, pp 1—16Google Scholar
  49. Starr RC, Zeikus JA (1993) UTEX–the culture collection of algae at the University of Texas at Austin. 1993 The list of cultures. J Phycol 29:1–106CrossRefGoogle Scholar
  50. Strittmatter M, Gachon CMM, Küpper FC (2009) Ecology of lower oomycetes. In: Lamour K, Kamoun S (eds) Oomycete genetics and genomics: diversity, plant and animal interactions, and toolbox. Wiley, Hoboken, pp 25–46CrossRefGoogle Scholar
  51. Strittmatter M, Gachon CMM, Müller DG et al (2013) Intracellular eukaryotic pathogens in brown macroalgae in the Eastern Mediterranean, including LSU rRNA data for the oomycete Eurychasma dicksonii. Dis Aquat Organ 104:1–11. doi: 10.3354/dao02583 PubMedCrossRefGoogle Scholar
  52. Tai V, Lindstrom SC, Saunders GW (2001) Phylogeny of the Dumontiaceae (Gigartinales, Rhodophyta) and associated families based on SSU rDNA and internal transcribed spacer sequence data. J Phycol 196:184–196CrossRefGoogle Scholar
  53. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729PubMedCrossRefGoogle Scholar
  54. Tsui CKM, Marshall W, Yokoyama R, Honda D, Lippmeier JC, Craven KD, Peterson PD, Berbee ML (2009) Labyrinthulomycetes phylogeny and its implications for the evolutionary loss of chloroplasts and gain of ectoplasmic gliding. Mol Phylogenet Evol 50:129–140PubMedCrossRefGoogle Scholar
  55. Turner J, Bindschadler RA, Convey P et al (2009) Antarctic climate change and the environment. SCAR, Cambridge, p 526Google Scholar
  56. Turner J, Barrand N, Bracegirdle T et al (2013) Antarctic climate change and the environment: an update. Polar Rec (Gr Brit) 1–23. doi:  10.1017/S0032247413000296
  57. Waller CL, Barnes DK, Convey P (2006) Ecological contrasts across an Antarctic land–sea interface. Austral Ecol 31:656–666. doi: 10.1111/j.1442-9993.2006.01618.x CrossRefGoogle Scholar
  58. Wiencke C (1996) Recent advances in the investigation of Antarctic macroalgae. Polar Biol 16:231–240. doi: 10.1007/s003000050049 CrossRefGoogle Scholar
  59. Wiencke C, Amsler CD (2012) Seaweeds and their communities in polar regions. In: Wiencke C, Bischof K (eds) Seaweed biol. Springer, Berlin, pp 265–292CrossRefGoogle Scholar
  60. Wiencke C, Clayton MN (2002) Antarctic seaweeds. A.R.G Gantner Verlag KG Ruggell, LichtensteinGoogle Scholar
  61. Wiencke C, tom Dieck I (1989) Temperature requirements for growth and temperature tolerance of macroalgae endemic to the Antarctic region. Mar Ecol Prog Ser 54:189–197CrossRefGoogle Scholar
  62. Wiencke C, tom Dieck I (1990) Temperature requirements for growth and survival of macroalgae from Antarctica and southern Chile. Mar Ecol Prog Ser 59:157–170CrossRefGoogle Scholar
  63. Wiencke C, Bartsch I, Bischoff B, Peters AF, Breeman AM (1994) Temperature requirements and biogeography of Antarctic, Arctic and amphiequatorial seaweeds. Bot Mar 37:247–259CrossRefGoogle Scholar
  64. Wiencke C, Gómez I, Dunton K (2009) Phenology and seasonal physiological performance of polar seaweeds. Bot Mar 52:585–592. doi: 10.1515/BOT.2009.078 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alexandra Mystikou
    • 1
    • 2
    • 3
  • Akira F. Peters
    • 4
  • Aldo O. Asensi
    • 5
  • Kyle I. Fletcher
    • 1
    • 2
  • Paul Brickle
    • 3
  • Pieter van West
    • 2
  • Peter Convey
    • 6
  • Frithjof C. Küpper
    • 1
    • 7
  1. 1.OceanlabUniversity of AberdeenNewburghScotland, UK
  2. 2.Aberdeen Oomycete Laboratory, College of Life Sciences and Medicine, Institute of Medical SciencesUniversity of AberdeenAberdeenScotland, UK
  3. 3.South Atlantic Environmental Research InstituteStanleyFalkland Islands
  4. 4.Bezhin RoskoSantec, BrittanyFrance
  5. 5.ParisFrance
  6. 6.British Antarctic SurveyCambridgeUK
  7. 7.Scottish Association for Marine ScienceOban, ArgyllScotland, UK

Personalised recommendations