The cosmopolitan moss Bryum argenteum in Antarctica: recent colonisation or in situ survival?

Abstract

Since the onset of glaciation following the Oligocene (30–28 Ma), the prevalence of increasingly cold conditions has shaped the evolution of the Antarctic biota. Two hypotheses, postglacial recruitment from extra-regional locations and in situ persistence, have been proposed to explain the biogeography of the contemporary species-poor terrestrial Antarctic biota. Bryophytes, which form a major group of the Antarctic flora, exhibit a strong, inherent ability to survive cold conditions but also have high long-distance dispersal capacities, which are compatible with both hypotheses. Here, we test these hypotheses by means of population genetic and phylogeographic analyses of the cosmopolitan moss Bryum argenteum. We find evidence for at least three independent colonisation events of the species in Antarctica. Ancestral area reconstruction coupled with molecular dating suggests colonisation times of the different Antarctic clades ranging from four million years for the oldest lineage to half a million years for the youngest lineage. This suggests multiple colonisation events of Antarctica by this species during several glacial cycles within the Pleistocene, Pliocene and possibly late Miocene. This is the first study to demonstrate in situ persistence of bryophytes in Antarctica throughout previous glaciations.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Aigoin DA, Devos N, Huttunen S, Ignatov MS, González-Mancebo JM, Vanderpoorten A (2009) And if Engler was not completely wrong? Evidence for multiple evolutionary origins in the moss flora of Macaronesia. Evolution 63:3248–3257

    PubMed  Article  Google Scholar 

  2. Anderson JB, Warnyb S, Askinc RA, Wellnerd JS, Bohatye SM, Kirshnera AE, Livseyf DN, Simmsf AR, Smitha TR, Ehrmanng W, Lawverh LA, Barbeaui D, Wisej SW, Kulhenekj DK, Weavera FM, Majewskik W (2011) Progressive Cenozoic cooling and the demise of Antarctica’s last refugium. Proc Natl Acad Sci USA 108:11356–11360

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  3. Baker PE, McReath I, Harvey MR, Roobol MJ, Davies TG (1975) The geology of the South Shetland Islands: V. Volcanic evolution of Deception Island. Br Antarct Surv Sci Rep 78:1–8

    CAS  Google Scholar 

  4. Barnes DKA, Hodgson DA, Convey P, Allen C, Clarke A (2006) Incursion and excursion of Antarctic biota: past, present and future. Global Ecol Biogeogr 15:121–142

    Article  Google Scholar 

  5. Benjamini Y, Yekutieli D (2001) The control of false discovery rate under dependency. Ann Stat 29:1165–1188

    Article  Google Scholar 

  6. Blattner FR (1999) Direct amplification of the entire ITS region from poorly preserved plant material using recombinant PCR. BioTech 27:1180–1185

    CAS  Google Scholar 

  7. Cannone N, Convey P, Guglielmin M (2013) Diversity trends of bryophytes in continental Antarctica. Polar Biol 36:259–271

    Article  Google Scholar 

  8. Clarke LJ, Ayre DJ, Robinson SA (2008) Somatic mutation and the Antarctic ozone hole. J Ecol 96:378–385

    Article  Google Scholar 

  9. Clarke LJ, Ayre DJ, Robinson SA (2009) Genetic structure of East Antarctic populations of the moss Ceratodon purpureus. Antarct Sci 21:51–58

    Article  Google Scholar 

  10. Convey P (2013) Antarctic ecosystems. In: Levin SA (ed) Encyclopedia of biodiversity, vol 1, 2nd edn. Elsevier, San Diego, pp 179–188

    Google Scholar 

  11. Convey P, Lewis Smith RI (2006) Geothermal bryophyte habitats in the South Sandwich Islands, maritime Antarctic. J Veg Sci 17:529–538

    Article  Google Scholar 

  12. Convey P, Stevens MI (2007) Antarctic biodiversity. Science 317:1877–1878

    PubMed  Article  CAS  Google Scholar 

  13. Convey P, Lewis Smith RI, Hodgson DA, Peat HJ (2000) The flora of the South Sandwich Islands, with particular reference to the influence of geothermal heating. J Biogeog 27:1279–1295

    Article  Google Scholar 

  14. Convey P, Gibson J, Hillenbrand C-D, Hodgson DA, Pugh PJA, Smellie JL, Stevens MI (2008) Antarctic terrestrial life—challenging the history of the frozen continent? Biol Rev 83:103–117

    PubMed  Article  Google Scholar 

  15. Convey P, Stevens MI, Hodgson DA, Smellie JL, Hillenbrand C-D, Barnes DKA, Clarke A, Pugh PJA, Linse K, Cary SC (2009) Exploring biological constraints on the glacial history of Antarctica. Quat Sci Rev 28:3035–3048

    Article  Google Scholar 

  16. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    PubMed  Article  CAS  Google Scholar 

  17. Désamoré A, Laenen B, Stech M, Papp B, Hedenäs L, Mateo RG, Vanderpoorten A (2012) How do temperate bryophytes face the challenge of a changing environment? Lessons from the past and predictions for the future. Glob Change Biol 18:2915–2924

    Article  Google Scholar 

  18. Douzery EJP, Pridgeon AM, Kores P, Linder HP, Kurzweil H, Chase MW (1999) Molecular phylogenetics of Disease (Orchidaceae): a contribution from nuclear ribosomal ITS sequences. Am J Bot 86:887–899

    PubMed  Article  CAS  Google Scholar 

  19. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  20. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  PubMed Central  Google Scholar 

  21. Fraser CI, Nikula R, Ruzzante DE, Waters JM (2012) Poleward bound: biological impacts of Southern Hemisphere glaciation. Trends Ecol Evol 27:462–471

    PubMed  Article  Google Scholar 

  22. Fraser CI, Terauds A, Smellie J, Convey P, Chown SL (2014) Geothermal activity helps life survive ice ages. Proc Natl Acad Sci USA 111:5634–5639

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  23. Furness SB, Grime JP (1982) Growth rate and temperature responses in bryophytes II. A comparative study of species of contrasted ecology. J Ecol 70:525–536

    Article  Google Scholar 

  24. Glime JM (2007) Bryophyte ecology. Volume 1. Physiological ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. http://www.bryoecol.mtu.edu/. Accessed 6 Feb 2014

  25. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  26. Hardy OJ, Vekemans X (2002) SPAGeDI: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  27. Heled J, Drummond A (2008) Bayesian inference of population size history from multiple loci. BMC Evol Biol 8:289

    PubMed  Article  PubMed Central  Google Scholar 

  28. Hills SFK, Stevens MI, Gemmill CEC (2010) Molecular support for Pleistocene persistence of the continental Antarctic moss Bryum argenteum. Antarct Sci 22:721–726

    Article  Google Scholar 

  29. Hutsemékers V, Szövényi P, Shaw AJ, González-Mancebo JM, Muñoz J, Vanderpoorten A (2011) Oceanic islands are not sinks of biodiversity in spore-producing plants. Proc Natl Acad Sci USA 108:18989–18994

    PubMed  Article  PubMed Central  Google Scholar 

  30. Huttunen S, Hedenäs L, Ignatov MS, Devos N, Vanderpoorten A (2008) Origin and evolution of the northern hemisphere disjunction in the moss genus Homalothecium (Brachytheciaceae). Am J Bot 95:720–730

    PubMed  Article  CAS  Google Scholar 

  31. Kay KM, Whittall JB, Hodges SA (2006) A survey of nuclear ribosomal internal transcribed spacer substitution rates across angiosperms: an approximate molecular clock with life history effects. BMC Evol Biol 6:36

    PubMed  Article  PubMed Central  Google Scholar 

  32. Košnar J, Herbstová M, Kolář F, Koutecký P, Kučera J (2012) A case study of intragenomic ITS variation in bryophytes: assessment of gene flow and role of polyploidy in the origin of European taxa of the Tortula muralis (Musci: Pottiaceae) complex. Taxon 61:709–720

    Google Scholar 

  33. La Farge C, Krista H, Williams KH, England JH (2013) Regeneration of Little Ice Age bryophytes emerging from a polar glacier with implications of totipotency in extreme environments. Proc Natl Acad Sci USA. doi:10.1073/pnas.1304199110

    PubMed  PubMed Central  Google Scholar 

  34. Laenen B, Désamoré A, Devos N, Shaw AJ, González-Mancebo JM, Carine MA, Vanderpoorten A (2011) Macaronesia: a source of hidden genetic diversity for post-glacial recolonisation of western Europe in the leafy liverwort Radula lindenbergiana. J Biogeogr 38:631–639

    Article  Google Scholar 

  35. Lewis AR, Marchant DR, Ashworth AC, Hedenäs L, Hemming SR, Johnson JV, Lengh MJ, Machlus ML, Newton AE, Raine JJ, Willenbring JK, Williams M, Wolfe AP (2008) Mid-Miocene cooling and the extinction of tundra in continental Antarctica. Proc Natl Acad Sci USA 105:10676–10678

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  36. Lewis LR, Behling E, Gousse H, Qian E, Elphick CS, Lamarre J-F, Bêty J, Liebezeit J, Rozzi R, Goffinet B (2014) First evidence of bryophyte diaspores in the plumage of transequatorial migrant birds. Peer J 2:e424. doi:10.7717/peerj.424

    PubMed  Article  PubMed Central  Google Scholar 

  37. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    PubMed  Article  CAS  Google Scholar 

  38. Longton R-E (1988) The biology of polar bryophytes and lichens. Cambridge University Press, Cambridge

    Google Scholar 

  39. Lönnel N, Hylander K, Jonsson BG, Sundberg S (2012) The fate of the missing spores—patterns of realized dispersal beyond the closest vicinity of a sporulating moss. PLoS One 7:e41987

    Article  Google Scholar 

  40. Mackintosh AN, Verleyen E, O’Brien PE, White DA, Jones RS, McKay R, Dunbar R, Gore DB, Fink D, Post AL, Miura H, Leventer A, Goodwin I, Hodgson DA, Lilly K, Crosta X, Golledge NR, Wagner B, Berg S, van Ommen T, Zwartz D, Roberts SJ, Vyverman W, Masse G (2013) Retreat history of the East Antarctic Ice Sheet since the last glacial maximum. Quat Sc Rev. doi:10.1016/j.quascirev.2013.07.024

    Google Scholar 

  41. McGaughran A, Toricelli G, Carapelli A, Frati F, Stevens MI, Convey P, Hogg ID (2010) Contrasting phylogeographic patterns for springtails reflect different evolutionary histories between the Antarctic Peninsula and continental Antarctica. J Biogeogr 37:103–119

    Article  Google Scholar 

  42. Müller K (2005) SeqState. Primer design and sequence statistics for phylogenetic DNA datasets. Appl Bioinform 4:65–69

    Article  Google Scholar 

  43. Nagy LG, Kocsubé S, Csanádi Z, Kovács GM, Petkovits T, Vágvölgyi C, Papp T (2012) Re-mind the gap! Insertion—deletion data reveal neglected phylogenetic potential of the nuclear ribosomal internal transcribed spacer (ITS) of Fungi. PLoS One 11:e49794

    Article  Google Scholar 

  44. Nieto Feliner G, Rosselló JA (2007) Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants. Mol Phylogenet Evol 44:911–919

    PubMed  Article  CAS  Google Scholar 

  45. Ochyra R, Lewis Smith RI, Bednarek-Ochyra H (2008) The illustrated moss flora of Antarctica. Cambridge University Press, Cambridge

    Google Scholar 

  46. Øvstedal DO, Lewis Smith RI (2001) Lichens of Antarctica and South Georgia. A guide to their identification and ecology. Cambridge University Press, Cambridge

    Google Scholar 

  47. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  48. Pisa S, Werner O, Vanderpoorten A, Magdy M, Ros RM (2013) Elevational patterns of genetic variation in the cosmopolitan moss Bryum argenteum (Bryaceae). Am J Bot 100:2000–2008

    PubMed  Article  Google Scholar 

  49. Pons O, Petit RJ (1996) Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144:1237–1245

    PubMed  CAS  PubMed Central  Google Scholar 

  50. Pugh PJA, Convey P (2008) Surviving out in the cold: antarctic endemic invertebrates and their refugia. J Biogeogr 35:2176–2186

    Article  Google Scholar 

  51. Rambaut A, Drummond AJ (2009) Tracer. Version 1.5. Molecular evolution, phylogenetics and epidemiology Web. http://tree.bio.ed.ac.uk/software/tracer/. Accessed 10 Dec 2013

  52. Ree RH, Smith SA (2008a) Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst Biol 57:4–14

    PubMed  Article  Google Scholar 

  53. Ree RH, Smith SA (2008b) Lagrange: likelihood analysis of geographic range evolution. Version 2.0. http://code.google.com/p/lagrange/. Accessed 11 Dec 2013

  54. Ree RH, Moore BR, Webb CO, Donoghue MJ (2005) A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. Evolution 59:2299–2311

    PubMed  Article  Google Scholar 

  55. Roads E, Longton RE, Convey P (2014) Millenial timescale regeneration in a moss from Antarctica. Curr Biol 24:222–223

    Article  Google Scholar 

  56. Skotnicki ML, Mackenzie AM, Clements MA, Selkirk PM (2005) DNA sequencing and genetic diversity of the 18S–26S nuclear ribosomal internal transcribed spacers (ITS) in nine Antarctic moss species. Antarct Sci 17:377–384

    Article  Google Scholar 

  57. Stenøien HK (2008) Slow molecular evolution in 18S rDNA, rbcL and nad5 genes of mosses compared with higher plants. J Evol Biol 21:566–571

    PubMed  Article  Google Scholar 

  58. Sundberg S (2013) Spore rain in relation to regional sources and beyond. Ecography 36:364–373

    Article  Google Scholar 

  59. Szövényi P, Sundberg S, Shaw AJ (2012) Long-distance dispersal and genetic structure of natural populations: an assessment of the inverse isolation hypothesis in peat mosses. Mol Ecol 21:5461–5472

    PubMed  Article  Google Scholar 

  60. Terauds A, Chown SL, Morgan F, Peat HJ, Watts DJ, Keys H, Convey P, Bergstrom DM (2012) Conservation biogeography of the Antarctic. Divers Distrib 18:726–741

    Article  Google Scholar 

  61. van Zanten BO (1978) Experimental studies on trans-oceanic long-range dispersal of moss spores in the Southern Hemisphere. J Hattori Bot Lab 44:455–482

    Google Scholar 

  62. van Zanten BO, Pócs T (1981) Distribution and dispersal of bryophytes. Adv Bryol 1:479–562

    Google Scholar 

  63. Vyverman W, Verleyen E, Wilmotte A, Hodgson DA, Willems A, Peeters K, Van de Vijver B, de Wever A, Leliaert F, Sabbe K (2010) Evidence for widespread endemism among Antarctic micro-organisms. Polar Sci 4:103–113

    Article  Google Scholar 

  64. Wang C-Y, Zhao J-C (2009) Phylogeny of Ptychostomum (Bryaceae, Musci) inferred from sequences of nuclear ribosomal DNA internal transcribed spacer (ITS) and chloroplast rps4. J Syst Evol 47:311–320

    Article  Google Scholar 

  65. Werner O, Ros RM, Guerra J (2002) Direct amplification and NaOH extraction: two rapid and simple methods for preparing bryophyte DNA for polymerase chain reaction (PCR). J Bryol 24:127–131

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the curators of the herbaria AAS, ACHE, CAS, CONN, E, EGR, MHA, MW, NY, S and also the private herbaria of D.T. Holyoak and B. Goffinet for the loan of material and to B. Albertos, R. Garilleti, B. Goffinet, J. M. González-Mancebo, F. Lara and M. Stech for collecting material used in this work. We also thank Oliva Martin-Sanchez for producing Fig. 1. This study has been supported financially by the Spanish Ministry of Science and Innovation (Projects CGL2008-00275/BOS and CGL2011-22936/BOS) and by the European Regional Development Funds. E. M. Biersma is supported by a Natural Environment Research Council PhD studentship (ref NE/K50094X/1), and P. Convey by Natural Environment Research Council core funding to the British Antarctic Society programme ‘Environmental Change and Evolution’. This paper also contributes to the Scientific Committee on Antarctic Research ‘State of the Antarctic Ecosystem’ programme. J. Patiño and A. Vanderpoorten gratefully acknowledge financial support from the Belgian Funds for Scientific Research and the University of Liege. We thank three reviewers for helpful comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Pisa.

Additional information

S. Pisa and E. M. Biersma have contributed equally to this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 120 kb)

Supplementary material 2 (DOCX 19 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pisa, S., Biersma, E.M., Convey, P. et al. The cosmopolitan moss Bryum argenteum in Antarctica: recent colonisation or in situ survival?. Polar Biol 37, 1469–1477 (2014). https://doi.org/10.1007/s00300-014-1537-3

Download citation

Keywords

  • Glacial refugia
  • Dispersal
  • Bryophytes
  • Molecular dating
  • Phylogeography