Skip to main content

Signals of resilience to ocean change: high thermal tolerance of early stage Antarctic sea urchins (Sterechinus neumayeri) reared under present-day and future pCO2 and temperature

Abstract

We tested the hypothesis that development of the Antarctic urchin Sterechinus neumayeri under future ocean conditions of warming and acidification would incur physiological costs, reducing the tolerance of a secondary stressor. The aim of this study is twofold: (1) quantify current austral spring temperature and pH near sea urchin habitat at Cape Evans in McMurdo Sound, Antarctica and (2) spawn S. neumayeri in the laboratory and raise early developmental stages (EDSs) under ambient (−0.7 °C; 400 µatm pCO2) and future (+2.6 °C; 650 and 1,000 µatm pCO2) ocean conditions and expose four EDSs (blastula, gastrula, prism, and 4-arm echinopluteus) to a one hour acute heat stress and assess survivorship. Results of field data from 2011 to 2012 show extremely stable inter-annual pH conditions ranging from 7.99 to 8.08, suggesting that future ocean acidification will drastically alter the pH-seascape for S. neumayeri. In the laboratory, S. neumayeri EDSs appear to be tolerant of temperatures and pCO2 levels above their current habitat conditions. EDSs survived acute heat exposures >20 °C above habitat temperatures of −1.9 °C. No pCO2 effect was observed for EDSs reared at −0.7 °C. When reared at +2.6 °C, small but significant pCO2 effects were observed at the blastula and prism stage, suggesting that multiple stressors are more detrimental than single stressors. While surprisingly tolerant overall, blastulae were the most sensitive stage to ocean warming and acidification. We conclude that S. neumayeri may be unexpectedly physiologically tolerant of future ocean conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Anlauf H, D’Croz L, O’Dea A (2011) A corrosive concoction: the combined effects of ocean warming and acidification on the early growth of a stony coral are multiplicative. J Exp Mar Biol and Ecol 397:13–20. doi:10.1016/j.jembe.2010.11.009

    Article  Google Scholar 

  2. Barnes DKA, Peck LS, Morley SA (2010) Ecological relevance of laboratory determined temperature limits: colonization potential, biogeography and resilience of Antarctic invertebrates to environmental change. Glob Chang Biol 16:3164–3169. doi:10.1111/j.1365-2486.2010.02176.x

    Article  Google Scholar 

  3. Bednaršek N, Tarling GA, Bakker DC, Fielding S, Cohen A, Kuzirian A, McCorkle D, Lézé B, Montagna R (2012) Description and quantification of pteropod shell dissolution: a sensitive bioindicator of ocean acidification. Glob Chang Biol 18:2378–2388

    Article  Google Scholar 

  4. Bosch I, Beauchamp KA, Steele ME, Pearse JS (1987) Development, metamorphosis, and seasonal abundance of embryos and larvae of the Antarctic sea urchin Sterechinus neumayeri. Biol Bull 173:126–135. doi:10.2307/1541867

    Article  Google Scholar 

  5. Boyd PW (2011) Beyond ocean acidification. Nat Geosci 4(5):273–274. doi:10.1038/ngeo1150

    CAS  Article  Google Scholar 

  6. Brey T, Pearse J, Basch L, McClintock J, Slattery M (1995) Growth and production of Sterechinus neumayeri (Echinoidea: Echinodermata) in McMurdo sound, Antarctica. Mar Biol 124:279–292. doi:10.1007/bf00347132

    Article  Google Scholar 

  7. Brockington S, Peck LS, Tyler PA (2007) Gametogenesis and gonad mass cycles in the common circumpolar Antarctic echinoid Sterechinus neumayeri. Mar Ecol Prog Ser 330:139–147

    Article  Google Scholar 

  8. Buckley LB, Kingsolver JG (2012) Functional and phylogenetic approaches to forecasting species’ responses to climate change. Ann Rev Ecol Evol Syst 43:205–226

    Article  Google Scholar 

  9. Byrne M (2011) Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Oceanogr Mar Biol: Ann Rev 49:1–42

    Google Scholar 

  10. Byrne M, Ho M, Selvakumaraswamy P, Nguyen HD, Dworjanyn SA, Davis AR (2009) Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios. Proc R Soc B: Biol Sci 276:1883–1888. doi:10.1098/rspb.2008.1935

    Article  Google Scholar 

  11. Byrne M, Ho M, Wong E, Soars NA, Selvakumaraswamy P, Shepard-Brennand H, Dworjanyn SA, Davis AR (2011) Unshelled abalone and corrupted urchins: development of marine calcifiers in a changing ocean. Proc R Soc B: Biol Sci 278:2376–2383. doi:10.1098/rspb.2010.2404

    Article  Google Scholar 

  12. Byrne M, Ho M, Koleits L, Price C, King C, Virtue P, Tilbrook B, Lamare M (2013) Vulnerability of the calcifying larval stage of the Antarctic sea urchin Sterechinus neumayeri to near-future ocean acidification and warming. Glob Chang Biol 19:2264–2275

    PubMed  Article  Google Scholar 

  13. Chown SL (2012) Trait-based approaches to conservation physiology: forecasting environmental change risks from the bottom up. Philos Trans R Soc B: Biol Sci 367:1615–1627

    Article  Google Scholar 

  14. Chown SL, Gaston KJ (2008) Macrophysiology for a changing world. Proc R Soc B: Biol Sci 275:1469–1478

    Article  Google Scholar 

  15. Clark MS, Peck LS (2009) HSP70 heat shock proteins and environmental stress in Antarctic marine organisms: a mini-review. Mar Genom 2:11–18

    Article  Google Scholar 

  16. Clark D, Lamare M, Barker M (2009) Response of sea urchin pluteus larvae (Echinodermata: Echinoidea) to reduced seawater pH: a comparison among a tropical, temperate, and a polar species. Mar Biol 156:1125–1137

    Article  Google Scholar 

  17. Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332:53–58

    CAS  PubMed  Article  Google Scholar 

  18. Delorme NJ, Sewell MA (2013) Temperature limits to early development of the New Zealand sea urchin Evechinus chloroticus (Valenciennes, 1846). J Thermal Biol 38:218–224

    Article  Google Scholar 

  19. Díaz A, Féral J-P, David B, Saucède T, Poulin E (2011) Evolutionary pathways among shallow and deep-sea echinoids of the genus Sterechinus in the Southern Ocean. Deep-Sea Res Part II: Top Stud Oceanogr 58:205–211

    Article  Google Scholar 

  20. Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res Part A-Oceanogr Res Papers 34:1733–1743. doi:10.1016/0198-0149(87)90021-5

    CAS  Article  Google Scholar 

  21. Dickson AG, Sabine CL, Christian JR (Eds) (2007) Guide to best practices for ocean CO2 measurements. PICES Special Publication 3, 191 pp

  22. Dupont S, Thorndyke M (2009) Impact of CO2-driven ocean acidification on invertebrates early life-history—what we know, what we need to know and what we can do. Biogeosci Discuss 6:3109–3131

    Article  Google Scholar 

  23. Enzor LA, Zippay ML, Place SP (2013) High latitude fish in a high CO2 world: synergistic effects of elevated temperature and carbon dioxide on the metabolic rates of Antarctic notothenioids. Comp Biochem Physiol Part A: Molec Integrat Physiol 164:154–161

    CAS  Article  Google Scholar 

  24. Ericson JA, Ho MA, Miskelly A, King CK, Virtue P, Tilbrook B, Byrne M (2012) Combined effects of two ocean change stressors, warming and acidification, on fertilization and early development of the Antarctic echinoid Sterechinus neumayeri. Polar Biol 35:1027–1034. doi:10.1007/s00300-011-1150-7

    Article  Google Scholar 

  25. Evans TG, Hofmann GE (2012) Defining the limits of physiological plasticity: how gene expression can assess and predict the consequences of ocean change. Philos Trans R Soc B: Biol Sci 367:1733–1745

    Article  Google Scholar 

  26. Evans TG, Chan F, Menge BA, Hofmann GE (2013) Transcriptomic responses to ocean acidification in larval sea urchins from a naturally variable pH environment. Molec Ecol 22:1609–1625

    CAS  Article  Google Scholar 

  27. Fabry VJ, McClintock JB, Mathis JT, Grebmeier JM (2009) Ocean acidification at high latitudes: the bellweather. Oceanography 22:160–171

    Article  Google Scholar 

  28. Fangue NA, O’Donnell MJ, Sewell MA, Matson PG, MacPherson AC, Hofmann GE (2010) A laboratory-based, experimental system for the study of ocean acidification effects on marine invertebrate larvae. Limnol Oceanogr Meth 8:441–452. doi:10.4319/lom.2010.8.441

    CAS  Article  Google Scholar 

  29. Feely RA (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366. doi:10.1126/science.1097329

    CAS  PubMed  Article  Google Scholar 

  30. Findlay HS, Kendall MA, Spicer JI, Widdicombe S (2009) Post-larval development of two intertidal barnacles at elevated CO2 and temperature. Mar Biol 157:725–735. doi:10.1007/s00227-009-1356-1

    Article  Google Scholar 

  31. Findlay HS, Kendall MA, Spicer JI, Widdicombe S (2010) Relative influences of ocean acidification and temperature on intertidal barnacle post-larvae at the northern edge of their geographic distribution. Estuar Coast Shelf Sci 86:675–682. doi:10.1016/j.ecss.2009.11.036

    CAS  Article  Google Scholar 

  32. Fyfe JC (2006) Southern Ocean warming due to human influence. Geophys Res Lett 33:L19701

    Article  Google Scholar 

  33. Gienapp P, Teplitsky C, Alho J, Mills J, Merilä J (2008) Climate change and evolution: disentangling environmental and genetic responses. Molec Ecol 17:167–178

    CAS  Article  Google Scholar 

  34. Gille ST (2002) Warming of the Southern Ocean since the 1950s. Science 295:1275–1277. doi:10.1126/science.1065863

    CAS  PubMed  Article  Google Scholar 

  35. Giudice G, Mutolo V, Donatuti G (1968) Gene expression in sea urchin development. Dev Genes Evol 161:118–128

    Google Scholar 

  36. Giudice G, Sconzo G, Roccheri MC (1999) Studies on heat shock proteins in sea urchin development. Dev Growth Differ 41:375–380

    CAS  PubMed  Article  Google Scholar 

  37. Hammond LM, Hofmann GE (2010) Thermal tolerance of Strongylocentrotus purpuratus early life history stages: mortality, stress-induced gene expression and biogeographic patterns. Mar Biol 157:2677–2687. doi:10.1007/s00227-010-1528-z

    PubMed Central  PubMed  Article  Google Scholar 

  38. Harvey BP, Gwynn-Jones D, Moore PJ (2013) Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecol Evol 3:1016–1030. doi:10.1002/ece3.516

    PubMed Central  PubMed  Article  Google Scholar 

  39. Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485

    CAS  PubMed  Article  Google Scholar 

  40. Hofmann GE, Buckley BA, Airaksinen S, Keen JE, Somero GN (2000) Heat-shock protein expression is absent in the Antarctic fish Trematomus bernacchii (family Nototheniidae). J Exp Biol 203:2331–2339

    CAS  PubMed  Google Scholar 

  41. Hofmann GE, Lund SG, Place SP, Whitmer AC (2005) Some like it hot, some like it cold: the heat shock response is found in New Zealand but not Antarctic notothenioid fishes. J Exp Mar Biol Ecol 316:79–89

    CAS  Article  Google Scholar 

  42. Hofmann GE, Smith JE, Johnson KS, Send U, Levin LA, Micheli F, Paytan A, Price NN, Peterson B, Takeshita Y, Matson PG, Crook ED, Kroeker KJ, Gambi MC, Rivest EB, Frieder CA, Yu PC, Martz TR (2011) High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS One 6:e28983. doi:10.1371/journal.pone.0028983

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  43. Hönisch B, Ridgwell A, Schmidt DN, Thomas E, Gibbs SJ, Sluijs A, Zeebe R, Kump L, Martindale RC, Greene SE, Kiessling W, Ries J, Zachos JC, Royer DL, Barker S, Marchitto TM Jr, Moyer R, Pelejero C, Ziveri P, Foster GL, Williams B (2012) The geological record of ocean acidification. Science 335:1058–1063. doi:10.1126/science.1208277

    PubMed  Article  Google Scholar 

  44. Howard-Ashby M, Materna SC, Brown CT, Tu Q, Oliveri P, Cameron RA, Davidson EH (2006) High regulatory gene use in sea urchin embryogenesis: implications for bilaterian development and evolution. Dev Biol 300:27–34

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  45. Hunt BM, Hoefling K, Cheng CC (2003) Annual warming episodes in seawater temperatures in McMurdo Sound in relationship to endogenous ice in notothenioid fish. Antarct Sci 15:333–338

    Article  Google Scholar 

  46. IPCC (2007) Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Cambridge University Press, Cambridge

  47. Kelly MW, Hofmann GE (2012) Adaptation and the physiology of ocean acidification. Func Ecol 27:980–990. doi:10.1111/j.1365-2435.2012.02061.x

    Article  Google Scholar 

  48. Kelly MW, Padilla-Gamiño JL, Hofmann GE (2013) Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrotus purpuratus. Glob Chang Biol 19:2536–2546. doi:10.1111/gcb.12251

    PubMed  Article  Google Scholar 

  49. Kurihara H (2008) Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Mar Ecol Prog Ser 373:275–284

    CAS  Article  Google Scholar 

  50. Lee YH, Song M, Lee S, Leon R, Godoy SO, Canete I (2004) Molecular phylogeny and divergence time of the Antarctic sea urchin (Sterechinus neumayeri) in relation to the South American sea urchins. Antarct Sci 16:29–36

    Article  Google Scholar 

  51. Littlepage JL (1965) Oceanographic investigations in McMurdo sound, Antarctica. Antarct Res Ser 5:1–37

    Google Scholar 

  52. Marcott SA, Shakun JD, Clark PU, Mix AC (2013) A reconstruction of regional and global temperature for the past 11,300 years. Science 339:1198–1201

    CAS  PubMed  Article  Google Scholar 

  53. Martz TR, Connery JG, Johnson KS (2010) Testing the Honeywell Durafet (R) for seawater pH applications. Limnol Oceanogr Meth 8:172–184. doi:10.4319/lom.2010.8.172

    CAS  Article  Google Scholar 

  54. Matson PG (2012) Ocean acidification in nearshore marine ecosystems: natural dynamics of ocean pH variation and impacts on sea urchin larvae. Dissertation, University of California Santa Barbara

  55. Matson PG, Martz TR, Hofmann GE (2011) High-frequency observations of pH under Antarctic sea ice in the southern Ross Sea. Antarct Sci 23:607–613. doi:10.1017/s0954102011000551

    Article  Google Scholar 

  56. McClintock J, Ducklow H, Fraser W (2008) Ecological responses to climate change on the Antarctic Peninsula. Am Sci 96:302–310

    Article  Google Scholar 

  57. McNeil BI, Matear RJ (2008) Southern Ocean acidification: a tipping point at 450-ppm atmospheric CO2. Proc Natl Acad Sci 105:18860–18864. doi:10.1073/pnas.0806318105

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  58. Mehrbach C, Culberso Ch, Hawley JE, Pytkowic Rm (1973) Measurement of apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907

    CAS  Article  Google Scholar 

  59. Montes-Hugo M, Doney SC, Ducklow HW, Fraser W, Martinson D, Stammerjohn SE, Schofield O (2009) Recent changes in phytoplankton communities associated with rapid regional climate change along the western Antarctic Peninsula. Science 323:1470–1473

    CAS  PubMed  Article  Google Scholar 

  60. Naveen R, Lynch HJ, Forrest S, Mueller T, Polito M (2012) First direct, site-wide penguin survey at Deception Island, Antarctica, suggests significant declines in breeding chinstrap penguins. Polar Biol 35:1879–1888

    Google Scholar 

  61. O’Donnell MJ, Hammond LM, Hofmann GE (2008) Predicted impact of ocean acidification on a marine invertebrate: elevated CO2 alters response to thermal stress in sea urchin larvae. Mar Biol 156:439–446. doi:10.1007/s00227-008-1097-6

    Article  Google Scholar 

  62. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner G-K, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig M-F, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686. doi:10.1038/nature04095

    CAS  PubMed  Article  Google Scholar 

  63. Parker LM, Ross PM, O’Connor WA (2009) The effect of ocean acidification and temperature on the fertilization and embryonic development of the Sydney rock oyster Saccostrea glomerata (Gould 1850). Glob Chang Biol 15:2123–2136. doi:10.1111/j.1365-2486.2009.01895.x

    Article  Google Scholar 

  64. Parker LM, Ross PM, O’Connor WA (2010) Comparing the effect of elevated pCO2 and temperature on the fertilization and early development of two species of oysters. Mar Biol 157:2435–2452. doi:10.1007/s00227-010-1508-3

    Article  Google Scholar 

  65. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    CAS  PubMed  Article  Google Scholar 

  66. Pearse JS, Giese AC (1966) Food, reproduction and organic constitution of common Antarctic echinoid Sterechinus neumayeri (Meissner). Biol Bull 130:387–401. doi:10.2307/1539745

    CAS  PubMed  Article  Google Scholar 

  67. Peck LS (2005) Prospects for survival in the Southern Ocean: vulnerability of benthic species to temperature change. Antarct Sci 17:497–507. doi:10.1017/s0954102005002920

    Article  Google Scholar 

  68. Peck LS, Clark MS, Morley SA, Massey A, Rossetti H (2009) Animal temperature limits and ecological relevance: effects of size, activity and rates of change. Func Ecol 23:248–256. doi:10.1111/j.1365-2435.2008.01537.x

    Article  Google Scholar 

  69. Peck LS, Morley SA, Clark MS (2010) Poor acclimation capacities in Antarctic marine ectotherms. Mar Biol 157:2051–2059. doi:10.1007/s00227-010-1473-x

    Article  Google Scholar 

  70. Pespeni MH, Sanford E, Gaylord B, Hill TM, Hosfelt JD, Jaris HK, LaVigne M, Lenz EA, Russell AD, Young MK (2013) Evolutionary change during experimental ocean acidification. Proc Natl Acad Sci 110:6937–6942

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  71. Place SP, Zippay ML, Hofmann GE (2004) Constitutive roles for inducible genes: evidence for the alteration in expression of the inducible hsp70 gene in Antarctic notothenioid fishes. Am J Physiol Regul Integr Comp Physiol 287:R429–R436. doi:10.1152/ajpregu.00223.2004

    CAS  PubMed  Article  Google Scholar 

  72. Pörtner HO, Farrell AP (2008) Physiology and climate change. Science 322:690–692. doi:10.1126/science.1163156

    PubMed  Article  Google Scholar 

  73. Pörtner HO, Peck L, Somero G (2007) Thermal limits and adaptation in marine Antarctic ectotherms: an integrative view. Philos Trans R Soc B: Biol Sci 362:2233–2258. doi:10.1098/rstb.2006.1947

    Article  Google Scholar 

  74. Pörtner HO, Peck LS, Somero GN (2012) Mechanisms defining thermal limits and adaptation in marine ectotherms: an integrative view. Antarctic ecosystems: an extreme environment in a changing world. Wiley, Chichester. doi:10.1002/9781444347241.ch13

    Google Scholar 

  75. Robbins LL, Hansen ME, Kleypas JA, Meylan SC (2010) CO2calc—a user-friendly seawater carbon calculator for Windows, Max OS X, and iOS (iPhone). U.S. Geological Survey Open-File Report 2010–1280

  76. Roccheri MC, Sconzo G, Larosa M, Oliva D, Abrignani A, Giudice G (1986) Response to heat shock of different sea urchin species. Cell Differ 18:131–135. doi:10.1016/0045-6039(86)90007-2

    CAS  PubMed  Article  Google Scholar 

  77. Schaum E, Rost B, Millar AJ, Collins S (2013) Variation in plastic responses to ocean acidification in a globally distributed picoplankton species. Nat Clim Chang 3:298–302

    CAS  Article  Google Scholar 

  78. Sconzo G, Ferraro MG, Amore G, Giudice G, Cascino D, Scardina G (1995) Activation by heat shock of hsp70 gene transcription in sea urchin embryos. Biochem Biophys Res Commun 217:1032–1038. doi:10.1006/bbrc.1995.2873

    CAS  PubMed  Article  Google Scholar 

  79. Sewell MA, Hofmann GE (2011) Antarctic echinoids and climate change: a major impact on the brooding forms. Glob Change Biol 17:734–744

    Article  Google Scholar 

  80. Sewell MA, Young CM (1999) Temperature limits to fertilization and early development in the tropical sea urchin Echinometra lucunter. J Exp Mar Biol Ecol 236:291–305. doi:10.1016/s0022-0981(98)00210-x

    Article  Google Scholar 

  81. Sewell MA, Millar RB, Yu PC, Kapsenberg L, Hofmann GE (2014) Ocean acidification and fertilization in the Antarctic sea urchin Sterechinus neumayeri: the importance of polyspermy. Environ Sci Technol 48:713–722

    CAS  PubMed  Article  Google Scholar 

  82. Sheppard Brennand H, Soars N, Dworjanyn SA, Davis AR, Byrne M (2010) Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla. PLoS One 5:e11372. doi:10.1371/journal.pone.0011372

    PubMed Central  PubMed  Article  Google Scholar 

  83. Somero GN (2012) The physiology of global change: linking patterns to mechanisms. Ann Rev Mar Sci 4:39–61

    PubMed  Article  Google Scholar 

  84. Stammerjohn SE, Martinson DG, Smith RC, Iannuzzi RA (2008) Sea ice in the western Antarctic Peninsula region: spatio-temporal variability from ecological and climate change perspectives. Deep-Sea Res Part II: Top Stud Oceanogr 55:2041–2058

    Article  Google Scholar 

  85. Stanwell-Smith D, Peck LS (1998) Temperature and embryonic development in relation to spawning and field occurrence of larvae of three Antarctic echinoderms. Biol Bull 194:44–52. doi:10.2307/1542512

    Article  Google Scholar 

  86. Steinberg DK, Martinson DG, Costa DP (2012) Two decades of pelagic ecology in the Western Antarctic Peninsula. Oceanography 25:56–67

    Article  Google Scholar 

  87. Sunday JM, Crim RN, Harley CDG, Hart MW (2011) Quantifying rates of evolutionary adaptation in response to ocean acidification. PLoS One 6:e22881. doi:10.1371/journal.pone.0022881

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  88. Sunday JM, Bates AE, Dulvy NK (2012) Thermal tolerance and the global redistribution of animals. Nat Clim Chang 2:686–690

    Google Scholar 

  89. Takahashi T, Sutherland SC, Wanninkhof R, Sweeney C, Feely RA, Chipman DW, Hales B, Friederich G, Chavez F, Sabine C et al (2009) Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Res Part II: Top Stud Oceanogr 56:554–577

    CAS  Article  Google Scholar 

  90. Terblanche JS, Hoffmann AA, Mitchell KA, Rako L, le Roux PC, Chown SL (2011) Ecologically relevant measures of tolerance to potentially lethal temperatures. J Exp Biol 214:3713–3725

    PubMed  Article  Google Scholar 

  91. Tomanek L (2010) Variation in the heat shock response and its implication for predicting the effect of global climate change on species’ biogeographical distribution ranges and metabolic costs. J Exp Biol 213:971–979

    CAS  PubMed  Article  Google Scholar 

  92. Turley C, Eby M, Ridgwell AJ, Schmidt DN, Findlay HS, Brownlee C, Riebesell U, Fabry VJ, Feely RA, Gattuso JP (2010) The societal challenge of ocean acidification. Mar Pollut Bull 60:787–792. doi:10.1016/j.marpolbul.2010.05.006

    CAS  PubMed  Article  Google Scholar 

  93. Visser ME (2008) Keeping up with a warming world; assessing the rate of adaptation to climate change. Proc R Soc B: Biol Sci 275:649–659

    Article  Google Scholar 

  94. Yu PC, Sewell MA, Matson PG, Rivest EB, Kapsenberg L, Hofmann GE (2013) Growth attenuation with developmental schedule progression in embryos and early larvae of Sterechinus neumayeri raised under elevated CO2. PLoS One 8:e52448

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  95. Zippay ML, Hofmann GE (2010a) Effect of pH on gene expression and thermal tolerance of early life history stages of Red Abalone (Haliotis rufescens). J Shellfish Res 29:429–439. doi:10.2983/035.029.0220

    Article  Google Scholar 

  96. Zippay ML, Hofmann GE (2010b) Physiological tolerances across latitudes: thermal sensitivity of larval marine snails (Nucella spp.). Mar Biol 157:707–714

    PubMed Central  PubMed  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank members of the US Antarctic Program: R. Robbins and S. Rupp for sea urchin collections and sensor deployments and Crary Laboratory staff of 2011 and 2012 for resource support at McMurdo Station, Antarctica. We thank Professor W. Rice for advice on statistical analysis. Additionally, we especially thank Dr. P.C. Yu and other members of the Bravo-134 field team for their support during larval culture and water chemistry measurements (Professor M. Sewell, Dr. G. Dilly, E. Hunter, Dr. A. Kelley, Dr. P. Matson, E. Rivest, and O. Turnross). We are grateful for the comments from two anonymous reviewers that led to the improvement of this manuscript. This research was supported by US National Science Foundation (NSF) Grant ANT-0944201 to GEH. L.K. was supported by a NSF Graduate Research Fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lydia Kapsenberg.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kapsenberg, L., Hofmann, G.E. Signals of resilience to ocean change: high thermal tolerance of early stage Antarctic sea urchins (Sterechinus neumayeri) reared under present-day and future pCO2 and temperature. Polar Biol 37, 967–980 (2014). https://doi.org/10.1007/s00300-014-1494-x

Download citation

Keywords

  • Ocean acidification
  • Development
  • Thermal tolerance
  • SeaFET
  • Sterechinus neumayeri
  • Antarctica