Abstract
The use of seabirds to assess marine contamination by trace elements in areas remote from pollutant emission points has already been done at various latitudes. Nevertheless, little information is available concerning the Southern Indian Ocean. Determining the contaminants levels, there appears necessary not only due to several deleterious effects reported in literature, but also as previous studies have highlighted elevated concentrations of cadmium (Cd) and mercury (Hg) in mollusks, crustaceans and fish. Within this context, the white-chinned petrel appears as a key species due to its lifespan, diet and trophic position. Thirty-three accidentally killed (collision with lights/bycatch in longline vessels) individuals collected in Kerguelen waters were analysed for Cd, copper (Cu), Hg, selenium (Se) and zinc (Zn) in liver, kidney, pectoral muscle, feathers and for mature males, testis. Elevated Hg concentrations (average 58.4 μg g−1 dw in liver) are likely due to the presence of mesopelagic prey in the diet of Procellaria aequinoctialis. Cd concentrations (average of 65.7 μg g−1 dw in kidney) can be attributed to a high level of fisheries offal consumption, as well as crustacean and squid ingestion. Correlation of Hg with Se indicates its detoxification by co-precipitation, and correlation of Cd with Zn suggests its displacement by Cd on metallothioneins binding sites. This work also indirectly confirms ecological data (range and diet composition) from the wintering period of the species, which is rather scarce. Seasonal diet change and moulting accounted more for the obtained results than sex of the birds.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abdulla M, Chmielnicka J (1990) New aspects on the distribution and metabolism of essential trace elements after dietary exposure to toxic metals. Biol Trace Elem Res 23:25–53
Agusa T, Matsumoto T, Ikemoto T, Anan Y, Kubota R, Yasunaga G, Kunito T, Tanabe S, Ogi H, Shibata Y (2005) Body distribution of trace elements in black-tailed gulls from Rishiri Island, Japan: age-dependent accumulation and transfer to feather and eggs. Environ Toxicol Chem 24:2107–2120
Anderson ORJ, Phillips RA, Shore RF, McGill RAR, McDonald RA, Bearhop S (2010) Element patterns in albatrosses and petrels: influence of trophic position, foraging range, and prey type. Environ Pollut 158:98–107
Barbraud C, Marteau C, Ridoux V, Delord K, Weimerskirch H (2008) Demographic response of a population of white-chinned petrels Procellaria aequinoctialis to climate and longline fishery bycatch. J Appl Ecol 45:1460–1467
Barbraud C, Delord K, Marteau C, Weimerskirch H (2009) Estimates of population size of white-chinned petrels and grey petrels at Kerguelen Islands and sensitivity to fisheries. Anim Conserv 12:258–265
Berrow SD, Croxall JP, Grant SD (2000) Status of white-chinned petrels Procellaria aequinoctialis Linnaeus 1758, at Bird Island, South Georgia. Antarct Sci 12:399–405
Birdlife International (2013) White-chinned Petrel Procellaria aequinoctialis. http://www.birdlife.org/datazone/speciesfactsheet.php?id=3922. Accessed 2 July 2013
Blévin P, Carravieri A, Jaeger A, Chastel O, Bustamante P, Cherel Y (2013) Wide range of mercury contamination in chicks of Southern Ocean seabirds. PLoS ONE 8:e54508
Bocher P, Caurant F, Miramand P, Cherel Y, Bustamante P (2003) Influence of the diet on the bioaccumulation of heavy metals in zooplankton-eating petrels at Kerguelen archipelago, Southern Indian Ocean. Polar Biol 26:759–767
Borgå K, Campbell L, Gabrielsen GW, Norstrom RJ, Muir DCG, Fisk AT (2006) Regional and species specific bioaccumulation of major and trace elements in Arctic seabirds. Environ Toxicol Chem 25:2927–2936
Bugoni L, Furness R (2009) Age composition and sexual size dimorphism of albatrosses and petrels off Brazil. Mar Ornithol 260:253–260
Bustamante P, Caurant F, Fowler SW, Miramand P (1998a) Cephalopods as a vector for the transfer of cadmium to top marine predators in the north-east Atlantic Ocean. Sci Total Environ 220:71–80
Bustamante P, Cherel Y, Caurant F, Miramand P (1998b) Cadmium, copper and zinc in octopuses from Kerguelen Islands, Southern Indian Ocean. Polar Biol 19:264–271
Bustamante P, Bocher P, Cherel Y, Miramand P, Caurant F (2003) Distribution of trace elements in the tissues of benthic and pelagic fish from the Kerguelen Islands. Sci Total Environ 313:25–39
Bustamante P, Bertrand M, Boucaud-Camou E, Miramand P (2006a) Subcellular distribution of Ag, Cd Co, Cu, Fe, Mn, Pb, and Zn in the digestive gland of the common cuttlefish Sepia officinalis. J Shellfish Res 25:987–993
Bustamante P, Lahaye V, Durnez C, Churlaud C, Caurant F (2006b) Total and organic Hg concentrations in cephalopods from the North Eastern Atlantic waters: influence of geographical origin and feeding ecology. Sci Total Environ 368:585–596
Carravieri A, Bustamante P, Churlaud C, Cherel Y (2013) Penguins as bioindicators of mercury contamination in the Southern Ocean: birds from the Kerguelen Islands as a case study. Sci Total Environ 454(455):141–148
Catard A, Weimerskirch H, Cherel Y (2000) Exploitation of distant Antarctic waters and close shelf-break waters by white-chinned petrels rearing chicks. Mar Ecol Prog Ser 194:249–261
Cherel Y, Attaix D, Rosolowska-Huszcz D, Belkhou R, Robin JR, Arnal M, Le Maho Y (1991) Whole-body and tissue protein synthesis during brief and prolonged fasting in the rat. Clin Sci 81:611–619
Chouvelon T, Spitz J, Caurant F, Mèndez-Fernandez P, Autier J, Lassus-Débat A, Chappuis A, Bustamante P (2012) Enhanced bioaccumulation of mercury in deep-sea fauna from the Bay of Biscay (north-east Atlantic) in relation to trophic positions identified by analysis of carbon and nitrogen stable isotopes. Deep-Sea Res Part I 65:113–124
Connan M, Cherel Y, Mabille G, Mayzaud P (2007) Trophic relationships of white-chinned petrels from Crozet Islands: combined stomach oil and conventional dietary analyses. Mar Biol 152:95–107
Coquery M, Azemard S, Mora S (2001) The analytical performance study for the Medpol region: determination of trace elements and methylmercury in estuarine sediment sample IAEA-405
Delord K, Cotté C, Péron C, Marteau C, Pruvost P, Gasco N, Duhamel G, Cherel Y, Weimerskirch H (2010) At-sea distribution and diet of an endangered top predator: relationship between white-chinned petrels and commercial longline fisheries. Endanger Species Res 13:1–16
Dietz R, Noorgard J, Hansen JC (1998) Have arctic marine mammals adapted to high cadmium levels? Mar Pollut Bull 36:490–492
Elliott J, Scheuhammer A (1997) Heavy metal and metallothionein concentrations in seabirds from the Pacific coast of Canada. Mar Pollut Bull 34:794–801
Fitzgerald W, Engstrom D (1998) The case for atmospheric mercury contamination in remote areas. Environ Sci Technol 32:1–7
Furness R, Camphuysen K (1997) Seabirds as monitors of the marine environment. ICES J Mar Sci 54:726–737
Gilbertson M, Elliott JE, Peakall DB (1987) Seabirds as indicators of marine pollution. In: Diamond AW, Filion F (eds) The value of birds. International Council for Bird Preservation, Cambridge, pp 231–248
Goutte A, Bustamante P, Barbraud C, Delord K, Weimeskirch H, Chastel O (2014) Demographic responses to mercury exposure in two closely-related Antarctic top predators. ESA Ecol. doi:10.1890/13-1229.1
Hobson KA, Clark RG (1992) Assessing avian diets using stable isotopes I: turnover of 13C in tissues. Condor 94:181–188
Honda K, Marcovecchio JE, Kan S, Tatsukawa R, Ogi H (1990) Metal concentrations in pelagic seabirds from the North Pacific Ocean. Arch Environ Contam Toxicol 19:704–711
Ikemoto T, Kunito T, Tanaka H, Baba N, Miyazaki N, Tanabe S (2004) Detoxification mechanism of heavy metals in marine mammals and seabirds: interaction of selenium with mercury, silver, copper, zinc, and cadmium in liver. Arch Environ Contam Toxicol 47:402–413
Jackson S (1988) Diets of the white-chinned petrel and sooty shearwater in the southern Benguela region, South Africa. Condor 90:20–28
Kim E, Goto R, Tanabe S (1998) Distribution of 14 elements in tissues and organs of oceanic seabirds. Arch Environ Contam Toxicol 35:638–645
Klaassen CD, Liu J, Choudhuri S (1999) Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu Rev Pharmacol Toxicol 39:267–294
Kojadinovic J, Le Corre M, Cosson RP, Bustamante P (2007) Trace elements in three marine birds breeding on Reunion Island (Western Indian ocean): part 1-factors influencing their bioaccumulation. Arch Environ Contam Toxicol 52:418–430
Levengood JM, Skowron LM (2007) Coaccumulation of cadmium and zinc in tissues of sentinel mallards (Anas platyrhynchos) using a former dredge-disposal impoundment. Arch Environ Contam Toxicol 53:281–286
Mailman RB (1980) Heavy metals. In: Perry JJ (ed) Introduction to environmental toxicology. Elsevier, New York, pp 34–43
Malinga M, Szefer P, Gabrielsen GW (2010) Age, sex and spatial dependent variations in heavy metals levels in the Glaucous Gulls (Larus hyperboreus) from the Bjørnøya and Jan Mayen, Arctic. Environ Monit Assess 169:407–416
Metian M, Warnau M, Chouvelon T, Pedraza F, Rodriguez Y, Baena AM, Bustamante P (2013) Trace element bioaccumulation in reef fish from New Caledonia: influence of trophic groups and risk assessment for consumers. Mar Environ Res 87(88):26–36
Monteiro LR, Furness RW (1995) Seabirds as monitors of mercury in the marine environment. Water Air Soil Pollut 80:851–870
Monteiro LR, Costa V, Furness RW, Santos RS (1996) Mercury concentrations in prey fish indicate enhanced bioaccumulation in mesopelagic environments. Mar Ecol Prog Ser 141:21–25
Muirhead S, Furness RW (1988) Heavy metal concentrations in the tissues of seabirds from Gough Island, South Atlantic Ocean. Mar Pollut Bull 19:278–283
Nigro M, Leonzio C (1996) Intracellular storage of mercury and selenium in different marine vertebrates. Mar Ecol Prog Ser 135:137–143
Ninomiya R, Koizumi N, Murata K (2004) Metal concentrations in the liver and kidney of aquatic mammals and penguins. Biol Trace Elem Res 97:135–148
Norheim G (1987) Levels and interactions of heavy metals in sea birds from Svalbard and the Antarctic. Environ Pollut 47:83–94
Ochoa-acuña H, Sepúlveda MS, Gross TS (2002) Mercury in feathers from Chilean birds: influence of location, feeding strategy, and taxonomic affiliation. Mar Pollut Bull 44:340–345
Péron C, Delord K, Phillips RA, Charbonnier Y, Marteau C, Louzao M, Weimerskirch H (2010) Seasonal variation in oceanographic habitat and behaviour of white-chinned petrels Procellaria aequinoctialis from Kerguelen Island. Mar Ecol Prog Ser 416:267–284
Ridoux V (1994) The diets and dietary segregation of seabirds at the subantarctic Crozet Islands (part 1). Mar Ornithol 22:1–64
Ritterhoff J, Zauke GP (1997) Influence of body length, life-history status and sex on trace metal concentrations in selected zooplankton collectives from the Greenland Sea. Mar Pollut Bull 34:614–621
Scheuhammer AM (1987) The chronic toxicity of aluminium, cadmium, mercury, and lead in birds: a review. Environ poll 46:263–295
Scheuhammer AM, Meyer MW, Sandheinrich MB, Murray MW (2007) Effects of environmental methylmercury on the health of wild birds, mammals, and fish. Ambio 36:12–18
Selin NE (2009) Global biogeochemical cycling of mercury: a review. Annu Rev Environ Resour 34:43–63
Stewart F, Phillips R, Bartle J (1999) Influence of phylogeny, diet, moult schedule and sex on heavy metal concentrations in New Zealand Procellariiformes. Mar Ecol Prog Ser 178:295–305
Tan SW, Meiller JC, Mahaffey KR (2009) The endocrine effects of mercury in humans and wildlife. Crit Rev Toxicol 39:228–269
Tartu S, Goutte A, Bustamante P, Angelier F, Moe B, Clément-Chastel C, Bech C, Gabrielsen GW, Bustness JO, Chastel O (2013) To breed or not to breed: endocrine response to mercury contamination by an arctic seabird. Biol Lett 9:20130317
Thompson DR, Furness RW, Monteiro LR (1998) Seabirds as biomonitors of mercury inputs to epipelagic and mesopelagic marine food chains. Sci Total Environ 213:299–305
Underwood EJ (1977) Trace elements in human and animal nutrition. Academic ed, New York
Walsh PM (1990) The use of seabirds as monitors of heavy metals in the marine environment. In: Furness RW, Rainbow PS (eds) heavy metals in the marine environment. CRC, New York, pp 183–204
Acknowledgments
The authors thank the fieldworkers who helped with collecting the petrels. The present work was supported financially and logistically by the Agence Nationale de la Recherche (programme POLARTOP, O. Chastel), the Institut Polaire Français Paul Emile Victor (IPEV, programme no. 109, H. Weimerskirch) and the Terres Australes et Antarctiques Françaises (TAAF). C.V.Z. Cipro was supported financially through a post-doctoral grant from the University of La Rochelle and the CNRS (French acronym for National Council of Scientific Research).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Cipro, C.V.Z., Cherel, Y., Caurant, F. et al. Trace elements in tissues of white-chinned petrels (Procellaria aequinoctialis) from Kerguelen waters, Southern Indian Ocean. Polar Biol 37, 763–771 (2014). https://doi.org/10.1007/s00300-014-1476-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00300-014-1476-z