Advertisement

Polar Biology

, Volume 37, Issue 4, pp 507–517 | Cite as

A method for estimating colony sizes of Adélie penguins using remote sensing imagery

  • M. A. LaRueEmail author
  • H. J. Lynch
  • P. O. B. Lyver
  • K. Barton
  • D. G. Ainley
  • A. Pollard
  • W. R. Fraser
  • G. Ballard
Original Paper

Abstract

Adélie penguins (Pygoscelis adeliae) are important predators of krill (Euphausia spp.) and Antarctic silverfish (Pleuragramma antarctica) during summer, are a key indicator of the status of the Southern Ocean ecosystem, and are therefore a focal species for the Committee for the Conservation of Antarctic Marine Living Resources (CCAMLR) Ecosystem Monitoring Program. The ability to monitor the population size of species potentially affected by Southern Ocean fisheries, i.e., the Adélie penguin, is critical for effective management of those resources. However, for several reasons, direct estimates of population size are not possible in many locations around Antarctica. In this study, we combine high-resolution (0.6 m) satellite imagery with spectral analysis in a supervised classification to estimate the sizes of Adélie penguin breeding colonies along Victoria Land in the Ross Sea and on the Antarctic Peninsula. Using satellite images paired with concurrent ground counts, we fit a generalized linear mixed model with Poisson errors to predict the abundance of breeding pairs as a function of the area of current-year guano staining identified in the satellite imagery. Guano-covered area proved to be an effective proxy for the number of penguins residing within. Our model provides a robust, quantitative mechanism for estimating the breeding population size of colonies captured in imagery and identifies terrain slope as a significant component influencing apparent nesting density. While our high-resolution satellite imagery technique was developed for the Adélie penguin, these principles are directly transferrable to other colonially nesting seabirds and other species that aggregate in fixed localities.

Keywords

Adélie penguin Antarctica Generalized linear mixed models GIS High-resolution imagery Population estimation Supervised classification 

Notes

Acknowledgments

This research was funded by National Science Foundation (OPP-0217282, OPP-0823101, ANT-0739515, ANT-0944411, OPP-1109962, PLR-1255058) and New Zealand’s Ministry for Business, Innovation and Employment (C09X0510, C01X0505, C01X1001, CONT-21216-BKBN). Field logistics were provided by the US Antarctic Program and Antarctica New Zealand, and helicopter support was provided by PHI, Inc., and Helicopters NZ. We thank the team of counters over the years, but in particular Peter Wilson, Bruce Thomas, Brian Karl, Keven Drew, Caroline Thomson, Morgan Coleman, Quoyah Barr-Glintborg, and Mario Fichtner. The Polar Geospatial Center facilitated use of imagery for analysis, and we thank Claire Porter for assistance with image processing. We would like to thank the editor and 3 anonymous reviewers for their feedback and insight in previous drafts of this manuscript. Point Blue Conservation Science contribution #1945.

References

  1. Abileah R (2002) Marine mammal census using space satellite imagery. US Navy J Underw Acoust 52:709–724Google Scholar
  2. Ainley DG (2002a) Adélie penguin: bellwether of climate change. Columbia University Press, New YorkGoogle Scholar
  3. Ainley DG (2002b) The Ross Sea, Antarctica, where all ecosystem processes still remain for study, but maybe not for long. Mar Ornith 30:55–62Google Scholar
  4. Ainley DG, Nur N, Woehler EJ (1995) Factors affecting the distribution and size of pygoscelid penguin colonies in the Antarctic. Auk 112:171–182CrossRefGoogle Scholar
  5. Ainley DG, Clarke ED, Arrigo K, Fraser WR, Kato A, Barton KJ, Wilson PR (2005) Decadal-scale changes in the climate and biota of the Pacific sector of the Southern Ocean, 1950s to the 1990s. Antarct Sci 17:171–182CrossRefGoogle Scholar
  6. Ainley DG, Russel J, Jenouvrier S, Woehler E, Lyver POB, Fraser WR, Kooyman GL (2010) Antarctic penguin responses to habitat change as Earth’s troposphere reaches 2 °C above preindustrial levels. Ecol Monogr 80:49–66CrossRefGoogle Scholar
  7. Barber-Meyer SM, Kooyman GL, Ponganis PJ (2007) Estimating the relative abundance of emperor penguin at inaccessible colonies using satellite imagery. Polar Biol 30:1565–1570CrossRefGoogle Scholar
  8. Bhikharidas AK, Whitehead MD, Peterson JA (1992) Mapping Adélie penguin rookeries in the Vestfold Hills and Rauer Islands, east Antarctica, using SPOT HRV. Int J Remote Sens 13:1577–1583CrossRefGoogle Scholar
  9. Boltunov A, Evtushenko N, Knijnikov A, Puhova M, Semenova V (2012) Space technology for the marine mammal research and conservation in the Arctic: results of the pilot project to develop methods of finding walruses on satellite images. WWF-RussiaGoogle Scholar
  10. Bricher PK, Lucieer A, Woehler EJ (2008) Population trends of Adélie penguin (Pygoscelis adeliae) breeding colonies: a spatial analysis of the effects of snow accumulation and human activities. Polar Biol 31:1397–1407CrossRefGoogle Scholar
  11. Buchanan GM, Butchart SHM, Dutson G, Pilgrim JD, Steininger MK, Bishop DK, Mayaux P (2008) Using remote sensing to inform conservation status assessment: estimates of recent deforestation rates on New Britain and the impacts upon endemic birds. Biol Cons 141:56–66CrossRefGoogle Scholar
  12. CCAMLR (2004) Commission for the conservation of Antarctic marine living resources, ecosystem monitoring program standard methods. http://www.ccamlr.org/en/document/science/cemp-standard-methods. Accessed 01 June 2013
  13. Chamaillé-Jammes S, Guinet C, Nicoleau F, Argentier M (2000) A method to assess population changes in king penguins: the use of a geographical information system to estimate area-population relationships. Polar Biol 23:545–549CrossRefGoogle Scholar
  14. Cook AJ, Fox AJ, Vaughn DG, Ferrigno JG (2005) Retreating glacier fronts on the Antarctic peninsula over the past half-century. Science 308:541–544PubMedCrossRefGoogle Scholar
  15. Crawford RJM, Dyer BM, Wolfaardt AC, Tshingana D, Spencer K, Peterson SL, Nel JL, Keith DG, Holness CL, Hanise B, Greyling MD, Du Toit M (2003) Population, breeding, diet, and conservation of the Crozet Shag (Phalacrocorax melanogenis) at Marion Island, 1995/95-2002/03. Afr J Mar Sci 25:537–547CrossRefGoogle Scholar
  16. Csatho B, Schenk T, Kyle P, Wilson T, Krabill WB (2008) Airborne laser swath mapping of the summit of Erebus volcano, Antarctica: applications to geological mapping of a volcano. J Volcan Geotherm Res 177:531–548CrossRefGoogle Scholar
  17. Ducklow HW, Baker K, Martinson DG, Quetin LB, Ross RM, Smith RC, Stammerjohn SE, Vernet M, Fraser W (2007) Marine pelagic ecosystems: the West Antarctic Peninsula. Phil Trans Royal Soc B 362:67–94CrossRefGoogle Scholar
  18. Esri (2011) ArcMap 10.1. Redlands, CAGoogle Scholar
  19. Foody GM (2002) Status of land cover classification accuracy assessment. Remote Sens Env 80:185–201CrossRefGoogle Scholar
  20. Fraser WR, Patterson DL (1997) Human disturbance ad long-term changes in Adélie penguin populations: a natural experiment at Palmer Station, Antarctic Peninsula. In: Battaglia B, Valencia J, Walton DH (eds) Antarctic communities: species, structure and survival. Cambridge University Press, Cambridge, pp 445–452Google Scholar
  21. Fraser WR, Trivelpiece WZ, Ainley DG, Trivelpiece SG (1992) Increases in Antarctic penguin populations: reduced competition with whales or a loss of sea ice due to global warming? Polar Biol 11:525–531CrossRefGoogle Scholar
  22. Fretwell PT, Trathan PN (2009) Penguins from space: faecal stains reveal the location of emperor penguin colonies. Glob Ecol Biogeogr 18:543–552CrossRefGoogle Scholar
  23. Fretwell PT, LaRue MA, Morin P, Kooyman GL, Wienecke B, Ratcliffe N, Fox AJ, Fleming AH, Porter C, Trathan PN (2012) The first global, synoptic survey of a species from space: emperor penguins. PLoS ONE 7(4):e33751. doi: 10.1371/journal.pone.0033751 PubMedCentralPubMedCrossRefGoogle Scholar
  24. Gaston KJ (2000) Global patterns in biodiversity. Nature 405:220–227PubMedCrossRefGoogle Scholar
  25. Gelman A, Hill J (2007) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, CambridgeGoogle Scholar
  26. Gillespie TW, Foody TM, Rocchini D, Giorgi AP, Saatchi S (2008) Measuring and modeling biodiversity from space. Prog Phys Geogr 32:203–221CrossRefGoogle Scholar
  27. Horning N, Robinson JA, Sterling EJ, Turner W, Spector S (2010) Remote sensing for ecology and conservation: a handbook of techniques. Oxford, New YorkGoogle Scholar
  28. Jenouvrier S, Barbraud C, Weimerskirch H (2006) Sea ice affects the population dynamics of Adélie penguins in Terre Adélie. Polar Biol 29:413–423CrossRefGoogle Scholar
  29. Kerr JT, Ostrovsky M (2003) From space to species: ecological applications for remote sensing. Trends Ecol Evol 18:299–305CrossRefGoogle Scholar
  30. LaRue M, Rotella JJ, Garrott RA, Siniff DB, Ainley DG, Stauffer GE, Porter CC, Morin PJ (2011) Satellite imagery can be used to detect variation in abundance of Weddell seals (Leptonychotes weddellii) in Erebus Bay, Antarctica. Polar Biol 34:1727–1737CrossRefGoogle Scholar
  31. LaRue MA, Ainley DG, Swanson M, Dugger KM, Lyver POB, Barton KJ, Ballard G (2013) Climate change winners: receding ice fields facilitate colony expansion and altered dynamics in an Adélie penguin metapopulation. PLoS ONE 8(4):e60568. doi: 10.1371/journal.pone.0060568 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Liu H, Jezek K, Li B, Zhao Z (2001) Radarsat Antarctic mapping project digital elevation model version 2. National Snow and Ice Data Center, Boulder, ColoradoGoogle Scholar
  33. Low M, Meyer L, Southwell C (2007) Number and distribution of Adélie penguin (Pygoscelis adeliae) breeding sites in the Robinson Group of islands, MacRobertson Land coast, east Antarctica. Polar Rec 43:225–229CrossRefGoogle Scholar
  34. Lynch HJ, Naveen R, Trathan PN, Fagan WR (2012a) Spatially integrated assessment reveals widespread change in penguin populations on the Antarctic Peninsula. Ecology 93:1367–1377PubMedCrossRefGoogle Scholar
  35. Lynch HJ, White R, Black AD, Naveen R (2012b) Detection, differentiation, and abundance estimation of penguin species by high-resolution satellite imagery. Polar Biol 35:963–968CrossRefGoogle Scholar
  36. Lyver POB, Macleod CJ, Ballard G, Karl BJ, Barton KJ, Adams J, Ainley DG, Wilson PR (2011) Intra-seasonal variation in foraging behavior among Adélie penguins (Pygoscelis adeliae) breeding at Cape Hallett, Ross Sea, Antarctica. Polar Biol 34:49–67CrossRefGoogle Scholar
  37. Lyver POB, Barron M, Barton KJ, Ainley DG, Pollard A, Gordon S, McNeill S, Ballard G, Wilson PR (2014) Trends in the breeding population of Adélie penguins in the Ross Sea, 1981–2012: a coincidence of climate and resource extraction effects. PLoSONE (in press)Google Scholar
  38. Montes-Hugo M, Doney SC, Ducklow HW, Fraser WR, Martinson D, Stammerjohn SE, Schofield O (2009) Recent changes in phytoplankton communities associated with rapid regional climate change. Science 323:1470–1473PubMedCrossRefGoogle Scholar
  39. Nagendra H (2001) Using remote sensing to assess biodiversity. Int J Remote Sens 22:2377–2400CrossRefGoogle Scholar
  40. Naveen R, Lynch HJ, Forrest S, Mueller T, Polito M (2012) First direct, site-wide penguin survey at Deception Island, Antarctica, suggests significant declines in breeding chinstrap populations. Polar Biol 35:1879–1888Google Scholar
  41. Penney RL (1968) Territorial and social behavior of the Adélie penguin. Antarct Res Ser 12:83–131Google Scholar
  42. Sailley SF, Ducklow HW, Moeller HV, Fraser WF, Schofield OM, Steinberg DK, Garzio LM, Doney SC (2013) Carbon fluxes and pelagic ecosystem dynamics near two western Antarctic Peninsula Adélie penguin colonies: an inverse model approach. Mar Ecol Prog Ser 492:253–272CrossRefGoogle Scholar
  43. Schofield O, Ducklow HW, Martinson DG, Meredith MP, Moline MA, Fraser WR (2010) How do polar marine ecosystems respond to rapid climate change? Science 328:1520–1523PubMedCrossRefGoogle Scholar
  44. Schwaller MR, Benninghoff MS, Olson CE (1984) Prospects for satellite remote sensing of Adélie penguin rookeries. Int J Remote Sens 5:849–853CrossRefGoogle Scholar
  45. Schwaller MR, Olson CE, Zhenqui M, Zhu Z (1989) A remote sensing analysis of Adélie penguin rookeries. Remote Sens Env 28:199–206CrossRefGoogle Scholar
  46. Schwaller MR, Southwell CJ, Emmerson LM (2013) Continental-scale mapping of Adélie penguin colonies from Landsat imagery. Remote Sens Env 139:353–364CrossRefGoogle Scholar
  47. Southwell C, Emmerson L (2013) Large-scale occupancy surveys in east Antarctica discover new Adélie penguin breeding sites and reveal and expanding breeding distribution. Antarct Sci 25:531–535CrossRefGoogle Scholar
  48. Southwell C, McKinlay J, Low M, Wilson D, Newbery K, Lieser JL, Emmerson L (2013) New methods and technologies for regional-scale abundance estimation of land-breeding marine animals: application to Adélie penguin populations in East Antarctica. Polar Biol. doi:  10.1007/s00300-01301310-z
  49. Stonehouse B (1975) The biology of penguins. Macmillan, LondonGoogle Scholar
  50. Taylor RH (1961) Adélie penguin (Pygoscelis adeliae) at Cape Royds. Ibis 104:176–204CrossRefGoogle Scholar
  51. Taylor RH, Wilson PR (1990) Recent increase and southern expansion of Adélie penguin populations in the Ross Sea, Antarctica, related to climatic warming. N Z J Ecol 14:25–29Google Scholar
  52. Thaxter CB, Burton NKH (2009) High definition imagery for surveying seabirds and marine mammals: a review of recent trials and development of protocols. COWRIE BTO workshop-09Google Scholar
  53. Trivelpiece W, Volkman J (1979) Nest-site competition between Adélie and chinstrap penguins: an ecological interpretation. Auk 96:675–681Google Scholar
  54. Trivelpiece WZ, Hinke JT, Miller AK, Reiss C, Trivelpiece SG, Watters M (2011) Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica. Proc Nat Acad Sci 108:7625–7628PubMedCentralPubMedCrossRefGoogle Scholar
  55. Turner W, Spector S, Gardiner N, Fladeland M, Sterline E, Steininger M (2003) Remote sensing for biodiversity science and conservation. Trends Ecol Evol 18:306–314CrossRefGoogle Scholar
  56. Volkman NJ, Trivelpiece W (1981) Nest-site selection among Adélie, chinstrap and gentoo penguins in mixed species rookeries. Wilson Bull 93:243–248Google Scholar
  57. Wilson PR, Ainley DG, Nur N, Jacobs S, Barton KJ, Ballard G, Comiso JC (2001) Adélie penguin population change in the pacific sector of Antarctica: relation to sea-ice extent and the Antarctic circumpolar current. Mar Ecol Progr Ser 213:301–309CrossRefGoogle Scholar
  58. Wilson D, Pike R, Southwell D, Southwell C (2009) A systematic survey of breeding Adélie penguins (Pygoscelis adeliae) along the Mawson and Kemp Land coasts, east Antarctica: new colonies and population counts. Antarct Sci 21:591–592CrossRefGoogle Scholar
  59. Woehler EJ (1993) The distribution and abundance of Antarctic and subantarctic penguins. Sci Comm Antarct Res, CambridgeGoogle Scholar
  60. Woehler EJ, Croxall JP (1997) The status and trends of Antarctic and sub-Antarctic seabirds. Mar Ornith 25:43–66Google Scholar
  61. Woehler EJ, Riddle MJ (1998) Spatial relationships of Adélie penguin colonies: implications for assessing population changes from remote imagery. Antarct Sci 10:49–454CrossRefGoogle Scholar
  62. Young EC (1994) Skua and penguin: predator and prey. Cambridge University Press, LondonCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • M. A. LaRue
    • 1
    Email author
  • H. J. Lynch
    • 2
  • P. O. B. Lyver
    • 3
  • K. Barton
    • 4
  • D. G. Ainley
    • 5
  • A. Pollard
    • 6
  • W. R. Fraser
    • 7
  • G. Ballard
    • 6
  1. 1.Conservation Biology Graduate ProgramUniversity of MinnesotaSt. PaulUSA
  2. 2.Department of Ecology and EvolutionStony Brook UniversityStony BrookUSA
  3. 3.Landcare ResearchLincolnNew Zealand
  4. 4.BartonK SolutionsNelsonNew Zealand
  5. 5.HT Harvey and AssociatesLos GatosUSA
  6. 6.Point Blue Conservation SciencePetalumaUSA
  7. 7.Polar Oceans Research GroupSheridanUSA

Personalised recommendations