Polar Biology

, Volume 37, Issue 3, pp 403–416 | Cite as

Characterization and comparison of potential denitrifiers in microbial mats from King George Island, Maritime Antarctica

  • Rocio J. Alcántara-Hernández
  • Carla M. Centeno
  • Alejandro Ponce-Mendoza
  • Silvia Batista
  • Martin Merino-Ibarra
  • Julio Campo
  • Luisa I. Falcón
Original Paper


Cyanobacterial microbial mats are highly structured communities commonly found in Antarctic inland waters including melt streams. These benthic microbial associations comprise a large number of microorganisms with different metabolic capacities, impacting nutrient dynamics where established. The denitrification process is a feasible nitrogen loss pathway and a biological source of nitrous oxide, a potent greenhouse gas that also promotes ozone depletion. Potential denitrifiers from five microbial mats were characterized using a PCR-DGGE (denaturing gradient gel electrophoresis) approach. Molecular markers encoding for key enzymes in the denitrification process (nirK, nirS and nosZ) were used. Fingerprints were obtained for the five sampled mats and compared for two successive years. Distance analysis showed that despite the sampled year, the denitrifying genetic potential was similar between most of the sites when represented in Euclidean space. The number of dominant denitrifiers detected for each sample ranged between 6 and 18 for nirK, 4–10 for nirS and 6–17 for nosZ. The seventy-two sequenced phylotypes showed 80–98 % identity to previously reported environmental sequences from water column, sediments and soil samples. These results suggest that Antarctic microbial mats have a large denitrification potential, previously uncharacterized and composed by both site-specific and common phylotypes belonging mainly to Alpha-, Beta- and Gammaproteobacteria.


Cyanobacterial microbial mat Denitrifiers PCR-DGGE Maritime Antarctica 


  1. Betlach MR (1982) Evolution of bacterial denitrification and denitrifier diversity. Antonie Van Leeuwenhoek 48:585–607PubMedCrossRefGoogle Scholar
  2. Bonin PC, Michotey VD (2006) Nitrogen budget in a microbial mat in the Camargue (southern France). Mar Ecol-Prog Ser 322:75–84CrossRefGoogle Scholar
  3. Bothe H, Jost G, Schloter M, Ward BB, Witzel K-P (2000) Molecular analysis of ammonia oxidation and denitrification in natural environments. FEMS Microbiol Rev 24:673–690PubMedCrossRefGoogle Scholar
  4. Braker G, Fesefeldt A, Witzel K-P (1998) Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl Environ Microbiol 64:3769–3775PubMedCentralPubMedGoogle Scholar
  5. Brinkhoff T, Giebel H-A, Simon M (2008) Diversity, ecology, and genomics of the Roseobacter clade: a short overview. Arch Microbiol 189:531–539PubMedCrossRefGoogle Scholar
  6. Brinkmeyer R, Knittel K, Jürgens J, Weyland H, Amann R, Helmke E (2003) Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl Environ Microbiol 69:6610–6619PubMedCentralPubMedCrossRefGoogle Scholar
  7. Buffan-Dubau E, Pringault O, de Wit R (2001) Artificial cold-adapted microbial mats cultured from Antarctic lake samples. 1. Formation and structure. Aquat Microb Ecol 26:115–125CrossRefGoogle Scholar
  8. Campanella JJ, Bitincka L, Smalley J (2003) MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinfor 4:29CrossRefGoogle Scholar
  9. Centeno CM, Legendre P, Beltrán Y, Alcántara-Hernández RJ, Lidström UE, Ashby MN, Falcón LI (2012) Microbialite genetic diversity and composition relate to environmental variables. FEMS Microbiol Ecol 82:724–735PubMedCrossRefGoogle Scholar
  10. Codispoti LA (2010) Interesting times for marine N2O. Science 327:1339–1340PubMedCrossRefGoogle Scholar
  11. Convey P, Gibson JAE, Hillenbrand CD, Hodgson DA, Pugh PJA, Smellie JL, Stevens MI (2008) Antarctic terrestrial life—challenging the history of the frozen continent? Biol Rev 83:103–117PubMedCrossRefGoogle Scholar
  12. Desnues C, Michotey VD, Wieland A, Zhizang C, Fourçans A, Duran R, Bonin PC (2007) Seasonal and diel distributions of denitrifying and bacterial communities in a hypersaline microbial mat (Camargue, France). Water Res 41:3407–3419PubMedCrossRefGoogle Scholar
  13. Downes M, Howard-Williams C, Hawes I, Schwarz A (2000) Nitrogen dynamics in a tidal lagoon at Bratina Island, McMurdo Ice Shelf, Antarctica. In: Davison W, Howard-Williams C, Broady P (eds) Antarctic ecosystems: models for wider ecological understanding. New Zealand Natural Sciences, Canterbury University, Christchurch, pp 19–25Google Scholar
  14. Dray S, Dufour A-B (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20Google Scholar
  15. Etchebehere C, Tiedje J (2005) Presence of two different active nirS nitrite reductase genes in a denitrifying Thauera sp. from a high-nitrate-removal-rate reactor. Appl Environ Microbiol 71:5642–5645 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Fernández‐Valiente E, Camacho A, Rochera C, Rico E, Vincent WF, Quesada A (2007) Community structure and physiological characterization of microbial mats in Byers Peninsula, Livingston Island (South Shetland Islands, Antarctica). FEMS Microbiol Ecol 59:377–385Google Scholar
  17. Gao H, Schreiber F, Collins G, Jensen MM, Kostka JE, Lavik G, de Beer D, Zhou H-y, Kuypers MMM (2009) Aerobic denitrification in permeable Wadden Sea sediments. ISME J 4:417–426PubMedCrossRefGoogle Scholar
  18. Golet DS, Ward BB (2001) Vertical distribution of denitrification potential, denitrifying bacteria, and benzoate utilization in intertidal microbial mat communities. Microb Ecol 42:22–34PubMedGoogle Scholar
  19. Gooseff MN, McKnight DM, Runkel RL, Duff JH (2004) Denitrification and hydrologic transient storage in a glacial meltwater stream, McMurdo Dry Valleys, Antarctica. Limnol Oceanogr 49:1884–1895CrossRefGoogle Scholar
  20. Gordon AD (1999) Classification, 2nd edn. Chapman and Hall/CRC, Boca Raton, FLGoogle Scholar
  21. Gosink JJ, Herwig RP, Staley JT (1997) Octadecabacter arcticus gen. nov., sp. nov., and O. antarcticus, sp. nov., nonpigmented, psychrophilic gas vacuolate bacteria from polar sea ice and water. Syst Appl Microbiol 20:356–365CrossRefGoogle Scholar
  22. Gouy M, Sp Guindon, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224PubMedCrossRefGoogle Scholar
  23. Grasshoff K, Kremlling K, Ehrhardt M (1983) Methods of seawater analysis. Verlag Chemie, WeinheimGoogle Scholar
  24. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321PubMedCrossRefGoogle Scholar
  25. Hallin S, Lindgren P-E (1999) PCR detection of genes encoding nitrite reductase in denitrifying bacteria. Appl Environ Microbiol 65:1652–1657PubMedCentralPubMedGoogle Scholar
  26. Hallin S, Throbäck IN, Dicksved J, Pell M (2006) Metabolic profiles and genetic diversity of denitrifying communities in activated sludge after addition of methanol or ethanol. Appl Environ Microbiol 72:5445–5452PubMedCentralPubMedCrossRefGoogle Scholar
  27. Heylen K, Gevers D, Vanparys B, Wittebolle L, Geets J, Boon N, De Vos P (2006) The incidence of nirS and nirK and their genetic heterogeneity in cultivated denitrifiers. Environ Microbiol 8:2012–2021PubMedCrossRefGoogle Scholar
  28. Howard-Williams C, Hawes I (2007) Ecological processes in Antarctic inland waters: interactions between physical processes and the nitrogen cycle. Antarct Sci 19:205–217CrossRefGoogle Scholar
  29. Howard-Williams C, Priscu JC, Vincent WF (1989) Nitrogen dynamics in two Antarctic streams. Hydrobiologia 172:51–61CrossRefGoogle Scholar
  30. Hughes KA, McCartney HA, Lachlan-Cope TA, Pearce DA (2004) A preliminary study of airborne microbial biodiversity over Peninsular Antarctica. Cell Mol Biol (Noisy-le-grand) 50:537–542Google Scholar
  31. Jones CM, Hallin S (2010) Ecological and evolutionary factors underlying global and local assembly of denitrifier communities. ISME J 4:633–641PubMedCrossRefGoogle Scholar
  32. Jones CM, Welsh A, Throbäck IN, Dörsch P, Bakken LR, Hallin S (2011) Phenotypic and genotypic heterogeneity among closely related soil-borne N2- and N2O-producing Bacillus isolates harboring the nosZ gene. FEMS Microbiol Ecol 76:541–552PubMedCrossRefGoogle Scholar
  33. Joye SB, Lee RY (2004) Benthic microbial mats: important sources of fixed nitrogen and carbon to the Twin Cays, Belize ecosystem. National Museum of Natural History, Smithsonian InstitutionGoogle Scholar
  34. Joye S, Paerl H (1994) Nitrogen cycling in microbial mats: rates and patterns of denitrification and nitrogen fixation. Mar Biol 119:285–295CrossRefGoogle Scholar
  35. Jung J, Choi S, Jung H, Scow KM, Park W (2013) Primers for amplification of nitrous oxide reductase genes associated with Firmicutes and Bacteroidetes in organic-compound-rich soils. Microbiology 159:307–315PubMedCrossRefGoogle Scholar
  36. Kirkwood D (1994) Sanplus segmented flow analyzer and its applications. Seawater analysis. Skalar, AmsterdamGoogle Scholar
  37. Kisand V, Wikner J (2003) Limited resolution of 16S rDNA DGGE caused by melting properties and closely related DNA sequences. J Microbiol Meth 54:183–191CrossRefGoogle Scholar
  38. Kloos K, Mergel A, Rösch C, Bothe H (2001) Denitrification within the genus Azospirillum and other associative bacteria. Funct Plant Biol 28:991–998CrossRefGoogle Scholar
  39. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948PubMedCrossRefGoogle Scholar
  40. McKnight DM, Runkel RL, Tate CM, Duff JH, Moorhead DL (2004) Inorganic N and P dynamics of Antarctic glacial meltwater streams as controlled by hyporheic exchange and benthic autotrophic communities. J N Am Benthol Soc 23:171–188CrossRefGoogle Scholar
  41. Michotey V, Méjean V, Bonin P (2000) Comparison of methods for quantification of cytochrome cd 1-denitrifying bacteria in environmental marine samples. Appl Environ Microb 66:1564–1571CrossRefGoogle Scholar
  42. Mosier AC, Francis CA (2010) Denitrifier abundance and activity across the San Francisco Bay estuary. Environ Microbiol Rep 2:667–676PubMedCrossRefGoogle Scholar
  43. Muyzer G, Teske A, Wirsen CO, Jannasch HW (1995) Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol 164:165–172PubMedCrossRefGoogle Scholar
  44. Nagashima S, Kamimura A, Shimizu T, Nakamura-Isaki S, Aono E, Sakamoto K, Ichikawa N, Nakazawa H, Sekine M, Yamazaki S, Fujita N, Shimada K, Hanada S, Nagashima KV (2012) Complete genome sequence of phototrophic betaproteobacterium Rubrivivax gelatinosus IL144. J Bacteriol 194:3541–3542PubMedCentralPubMedCrossRefGoogle Scholar
  45. Nkem JM, Wall DH, Virginia RA, Barrett JE, Broos EJ, Porazinska D (2006) Wind dispersal of soil invertebrates in the McMurdo Dry Valleys, Antarctica. Polar Biol 29:346–352CrossRefGoogle Scholar
  46. Oksanen J, Guillaume Blanchet F, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2012) Vegan: community ecology package v. 1.17–9. http://CRAN.R-project.org/package=vegan
  47. Orlando J, Carú M, Pommerenke B, Braker G (2012) Diversity and activity of denitrifiers of Chilean arid soil ecosystems. Front Microbiol. doi:10.3389/fmicb.2012.00101 Google Scholar
  48. Paerl HW, Pinckney JL, Steppe TF (2000) Cyanobacterial-bacterial mat consortia: examining the functional unit of microbial survival and growth in extreme environments. Environ Microbiol 2:11–26PubMedCrossRefGoogle Scholar
  49. Papadopoulos JS, Agarwala R (2007) COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics 23:1073–1079PubMedCrossRefGoogle Scholar
  50. Peeters K, Verleyen E, Hodgson DA, Convey P, Ertz D, Vyverman W, Willems A (2012) Heterotrophic bacterial diversity in aquatic microbial mat communities from Antarctica. Polar Biol 35:543–554CrossRefGoogle Scholar
  51. R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/
  52. Robertson L, Kuenen JG (1984) Aerobic denitrification: a controversy revived. Arch Microbiol 139:351–354CrossRefGoogle Scholar
  53. Santoro AE, Boehm AB, Francis CA (2006) Denitrifier community composition along a nitrate and salinity gradient in a coastal aquifer. Appl Environ Microb 72:2102–2109CrossRefGoogle Scholar
  54. Seitzinger SP (1988) Denitrification in freshwater and coastal marine ecosystems: ecological and geochemical significance. Limnol Oceanogr 33:702–724CrossRefGoogle Scholar
  55. Selje N, Simon M, Brinkhoff T (2004) A newly discovered Roseobacter cluster in temperate and polar oceans. Nature 427:445–448PubMedCrossRefGoogle Scholar
  56. Shiro Y, Fujii M, Isogai Y, Adachi S-i, Iizuka T, Obayashi E, Makino R, Nakahara K, Shoun H (1995) Iron-ligand structure and iron redox property of nitric oxide reductase cytochrome P450nor from Fusarium oxysporum: relevance to its NO reduction activity. Biochemistry 34:9052–9058PubMedCrossRefGoogle Scholar
  57. Song B, Ward BB (2003) Nitrite reductase genes in halobenzoate degrading denitrifying bacteria. FEMS Microbiol Ecol 43:349–357PubMedCrossRefGoogle Scholar
  58. Stal LJ (2012) Cyanobacterial mats and stromatolites. In: Whitton BA (ed) Ecology of cyanobacteria II: their diversity in space and time, vol XV. Springer, Dordrecht, pp 65–125CrossRefGoogle Scholar
  59. Tang EP, Tremblay R, Vincent WF (1997) Cyanobacterial dominance of polar freshwater ecosystems: are high-latitude mat-formers adapted to low temperatures? J Phycol 33:171–181CrossRefGoogle Scholar
  60. Thole S, Kalhoefer D, Voget S, Berger M, Engelhardt T, Liesegang H, Wollherr A, Kjelleberg S, Daniel R, Simon M, Thomas T, Brinkhoff T (2012) Phaeobacter gallaeciensis genomes from globally opposite locations reveal high similarity of adaptation to surface life. ISME J 6:2229–2244PubMedCrossRefGoogle Scholar
  61. Throbäck IN, Enwall K, Jarvis Å, Hallin S (2004) Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol Ecol 49:401–417PubMedCrossRefGoogle Scholar
  62. Turner J, Colwell SR, Marshall GJ, Lachlan-Cope TA, Carleton AM, Jones PD, Lagun V, Reid PA, Iagovkina S (2005) Antarctic climate change during the last 50 years. Int J Climatol 25:279–294CrossRefGoogle Scholar
  63. Turner J, Overland JE, Walsh JE (2007) An Arctic and Antarctic perspective on recent climate change. Int J Climatol 27:277–293CrossRefGoogle Scholar
  64. van Gemerden H (1993) Microbial mats: a joint venture. Mar Geol 113:3–25CrossRefGoogle Scholar
  65. van Hannen EJ, Zwart G, van Agterveld MP, Gons HJ, Ebert J, Laanbroek HJ (1999) Changes in bacterial and eukaryotic community structure after mass lysis of filamentous cyanobacteria associated with viruses. Appl Environ Microb 65:795–801Google Scholar
  66. Varin T, Lovejoy C, Jungblut AD, Vincent WF, Corbeil J (2012) Metagenomic analysis of stress genes in microbial mat communities from Antarctica and the High Arctic. Appl Environ Microb 78:549–559CrossRefGoogle Scholar
  67. Vincent W, Downes M, Castenholz R, Howard-Williams C (1993) Community structure and pigment organisation of cyanobacteria-dominated microbial mats in Antarctica. Eur J Phycol 28:213–221CrossRefGoogle Scholar
  68. Wallenstein MD, Myrold DD, Firestone M, Voytek M (2006) Environmental controls on denitrifying communities and denitrification rates: insights from molecular methods. Ecol Appl 16:2143–2152PubMedCrossRefGoogle Scholar
  69. Ward DM, Ferris MJ, Nold SC, Bateson MM (1998) A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiol Mol Biol R 62:1353–1370Google Scholar
  70. Wilkins D, Yau S, Williams TJ, Allen MA, Brown MV, DeMaere MZ, Lauro FM, Cavicchioli R (2013) Key microbial drivers in Antarctic aquatic environments. FEMS Microbiol Rev 37:303–335PubMedCrossRefGoogle Scholar
  71. Wynn-Williams DD (1996) Antarctic microbial diversity: the basis of polar ecosystem processes. Biodivers Conserv 5:1271–1293CrossRefGoogle Scholar
  72. Yoshida M, Ishii S, Fujii D, Otsuka S, Senoo K (2012) Identification of active denitrifiers in rice paddy soil by DNA- and RNA-based analyses. Microbes Environ 27:456–461PubMedCrossRefGoogle Scholar
  73. Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214Google Scholar
  74. Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microb 62:316–322Google Scholar
  75. Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol R 61:533–616Google Scholar
  76. Zumft WG, Kroneck PMH (2006) Respiratory transformation of nitrous oxide (N2O) to dinitrogen by Bacteria and Archaea. Adv Microb Physiol 52:107–227CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rocio J. Alcántara-Hernández
    • 1
  • Carla M. Centeno
    • 1
  • Alejandro Ponce-Mendoza
    • 2
  • Silvia Batista
    • 3
  • Martin Merino-Ibarra
    • 4
  • Julio Campo
    • 5
  • Luisa I. Falcón
    • 1
  1. 1.Laboratorio de Ecología Bacteriana y Epigenética, Instituto de EcologíaUniversidad Nacional Autónoma de MéxicoMexicoMexico
  2. 2.Centro Nacional de Investigación Disciplinaria en Conservación y Mejoramiento de Ecosistemas Forestales, INIFAPMexicoMexico
  3. 3.Unidad de Microbiología MolecularInstituto de Investigaciones Biológicas Clemente Estable (MEC)MontevideoUruguay
  4. 4.Unidad Académica de Ecología Marina, Instituto de Ciencias del Mar y LimnologíaUniversidad Nacional Autónoma de MéxicoMexicoMexico
  5. 5.Laboratorio de Biogeoquímica Terrestre y Clima, Instituto de EcologíaUniversidad Nacional Autónoma de MéxicoMexicoMexico

Personalised recommendations