Skip to main content

Advertisement

Log in

Expression of amino acid transporter genes in developmental stages and adult tissues of Antarctic echinoderms

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Epithelial cells in the body wall of adult and developmental stages of marine invertebrates absorb dissolved organic material directly from seawater. Despite over a century of study, little is known about the molecular biological mechanisms responsible for this transport process. Previous studies on embryonic and larval Antarctic echinoderms show that amino acid uptake could provide an important supplement of metabolic substrates. In the present study, partial cDNA sequences of 11 putative amino acid transporter genes were isolated from six species of Antarctic echinoderms including the Antarctic sea stars Acodontaster hodgsoni, Diplasterias brucei, Odontaster meridionalis, Odontaster validus, and Perknaster fuscus, and the Antarctic sea urchin Sterechinus neumayeri. Conserved domains of cDNA-deduced amino acid sequences characterized these genes as being members of a family of amino acid transporters (solute carrier family 6). Expression of these genes was detected throughout embryonic and larval development of two species that have contrasting developmental modes (A. hodgsoni: lecithotrophic; O. meridionalis: planktotrophic). In all six species studied, the expression of amino acid transporter genes was detected in tube feet and digestive organs of adult animals, demonstrating that members of a single amino acid transporter gene family are expressed during the entire life history of a marine invertebrate. The identification of these genes is an important step toward developing a mechanistic understanding of amino acid transport capacities in Antarctic marine invertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allemand D, Derenzis G, Ciapa B, Girard JP, Payan P (1984) Characterization of valine transport in sea urchin eggs. Biochim Biophys Acta 772:337–346

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Benner R (2002) Chemical composition and reactivity. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Academic Press, San Diego, pp 59–90

    Chapter  Google Scholar 

  • Beuming T, Shi L, Javitch JA, Weinstein H (2006) A comprehensive structure-based alignment of prokaryotic and eukaryotic neurotransmitter/Na+ symporters (NSS) aids in the use of the LeuT structure to probe NSS structure and function. Mol Pharmacol 70:1630–1642

    Article  PubMed  CAS  Google Scholar 

  • Bosch I, Pearse JS (1990) Developmental types of shallow-water asteroids of McMurdo Sound, Antarctica. Mar Biol 104:41–46

    Article  Google Scholar 

  • Boudko DY (2010) Molecular ontology of amino acid transport. In: Gerencser GA (ed) Epithelial transport physiology. Humana Press Inc., New Jersey, pp 379–472

    Chapter  Google Scholar 

  • Boudko DY, Kohn AB, Meleshkevitch EA, Dasher MK, Seron TJ, Stevens BR, Harvey WR (2005) Ancestry and progeny of nutrient amino acid transporters. PNAS 102:1360–1365

    Article  PubMed  CAS  Google Scholar 

  • Bowden DA, Clarke A, Peck LS (2009) Seasonal variation in the diversity and abundance of pelagic larvae of Antarctic marine invertebrates. Mar Biol 156:2033–2047

    Article  Google Scholar 

  • Bröer S (2008) Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev 88:249–286

    Article  PubMed  Google Scholar 

  • Chen NH, Reith MEA, Quick MW (2004) Synaptic uptake and beyond: the sodium- and chloride-dependent neurotransmitter transporter family SLC6. Pflugers Arch Eur J Physiol 447:519–531

    Article  CAS  Google Scholar 

  • Cheng C–C, Detrich HWI (2007) Molecular ecophysiology of Antarctic notothenioid fishes. Philos Trans R Soc B Biol Sci 362:2215–2232

    Article  CAS  Google Scholar 

  • Clarke A, Leakey RJG (1996) The seasonal cycle of phytoplankton, macronutrients, and the microbial community in a nearshore Antarctic marine ecosystem. Limnol Oceanogr 41:1281–1294

    Article  CAS  Google Scholar 

  • Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430:881–884

    Article  PubMed  CAS  Google Scholar 

  • Epel D (1972) Activation of an Na+ -dependent amino acid transport system upon fertilization of sea urchin eggs. Exp Cell Res 72:74–89

    Article  PubMed  CAS  Google Scholar 

  • Ferraris RP, Diamond JM (1989) Specific regulation of intestinal nutrient transporters by their dietary substrates. Annu Rev Physiol 51:125–141

    Article  PubMed  CAS  Google Scholar 

  • Ginsburg DW, Manahan DT (2009) Developmental physiology of Antarctic asteroids with different life-history modes. Mar Biol 156:2391–2402

    Article  Google Scholar 

  • Giordano D, Russo R, Di Prisco G, Verde C (2012) Molecular adaptations in Antarctic fish and marine microorganisms. Mar Genomics 6:1–6

    Article  PubMed  Google Scholar 

  • Gomme J (2001) Transport of exogenous organic substances by invertebrate integuments: the field revisited. J Exp Zool 289:254–265

    Article  PubMed  CAS  Google Scholar 

  • Hays G, Richardson A, Robinson C (2005) Climate change and marine plankton. Trends Ecol Evol 20:337–344

    Article  PubMed  Google Scholar 

  • He L, Vasiliou K, Nebert DW (2009) Analysis and update of the human solute carrier (SLC) gene superfamily. Hum Genomics 3:195–206

    Article  PubMed  CAS  Google Scholar 

  • Hoglund PJ, Adzic D, Scicluna SJ, Lindblom J, Fredriksson R (2005) The repertoire of solute carriers of family 6: identification of new human and rodent genes. Biochem Biophys Res Commun 336:175–189

    Article  PubMed  Google Scholar 

  • Jaeckle W, Manahan D (1989) Feeding by a “nonfeeding” larva: uptake of dissolved amino acids from seawater by lecithotrophic larvae of the gastropod Haliotis rufescens. Mar Biol 103:87–94

    Article  CAS  Google Scholar 

  • Jaeckle W, Manahan D (1992) Experimental manipulations of the organic composition of seawater—Implications for studies of energy budgets in marine invertebrate larvae. J Exp Mar Biol Ecol 156:273–284

    Article  Google Scholar 

  • Ji R, Edwards M, Mackas DL, Runge JA, Thomas AC (2010) Marine plankton phenology and life history in a changing climate: current research and future directions. J Plankton Res 32:1355–1368

    Article  PubMed  Google Scholar 

  • Johnson CH, Wendt DE (2007) Availability of dissolved organic matter offsets metabolic costs of a protracted larval period for Bugula neritina (Bryozoa). Mar Biol 151:301–311

    Article  Google Scholar 

  • Jorgensen CB (1976) August Pütter, August Krogh, and modern ideas on the use of dissolved organic matter in aquatic environments. Biol Rev Camb Philos 51:291–328

    Article  Google Scholar 

  • Kristensen AS, Andersen J, Jorgensen TN, Sorensen L, Eriksen J, Loland CJ, Stromgaard K, Gether U (2011) SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol Rev 63:585–640

    Article  PubMed  CAS  Google Scholar 

  • Manahan DT (1990) Adaptations by invertebrate larvae for nutrient acquisition from seawater. Am Zool 30:147–160

    Google Scholar 

  • Manahan DT, Wright SH, Stephens GC, Rice MA (1982) Transport of dissolved amino acids by the mussel, Mytilus edulis: demonstration of net uptake from natural seawater. Science 215:1253–1255

    Article  PubMed  CAS  Google Scholar 

  • Manahan DT, Davis JP, Stephens GC (1983) Bacteria-free sea urchin larvae: selective uptake of neutral amino acids from seawater. Science 220:204–206

    Article  PubMed  CAS  Google Scholar 

  • Manahan DT, Jaeckle WB, Nourizadeh SD (1989) Ontogenic changes in the rates of amino acid transport from seawater by marine invertebrate larvae (Echinodermata, Echiura, Mollusca). Biol Bull 176:161–168

    Article  CAS  Google Scholar 

  • Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH (2011) CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res 39:D225–D229

    Article  PubMed  CAS  Google Scholar 

  • Marsh AG, Leong PKK, Manahan DT (1999) Energy metabolism during embryonic development and larval growth of an Antarctic sea urchin. J Exp Biol 202:2041–2050

    PubMed  CAS  Google Scholar 

  • Meyer E, Manahan DT (2009) Nutrient uptake by marine invertebrates: cloning and functional analysis of amino acid transporter genes in developing sea urchins (Strongylocentrotus purpuratus). Biol Bull 217:6–24

    PubMed  Google Scholar 

  • Meyer E, Green AJ, Moore M, Manahan DT (2007) Food availability and physiological state of sea urchin larvae (Strongylocentrotus purpuratus). Mar Biol 152:179–191

    Article  Google Scholar 

  • Moore M, Manahan DT (2007) Variation among females in egg lipid content and developmental success of echinoderms from McMurdo Sound, Antarctica. Polar Biol 30:1245–1252

    Article  Google Scholar 

  • Moran AL, Manahan DT (2004) Physiological recovery from prolonged ‘starvation’ in larvae of the Pacific oyster Crassostrea gigas. J Exp Mar Biol Ecol 306:17–36

    Article  CAS  Google Scholar 

  • Pacha J (2000) Development of intestinal transport function in mammals. Physiol Rev 80:1633–1667

    PubMed  CAS  Google Scholar 

  • Palacin M, Estevez R, Bertran J, Zorzano A (1998) Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev 78:969–1054

    PubMed  CAS  Google Scholar 

  • Pearse JS, McClintock JB, Bosch I (1991) Reproduction of Antarctic benthic marine invertebrates: tempos, modes, and timing. Am Zool 31:65–80

    Google Scholar 

  • Peck L, Clark M, Clarke A, Cockell C, Convey P, Detrich H, Fraser K, Johnston I, Methe B, Murray A, Romisch K, Rogers A (2005) Genomics: applications to Antarctic ecosystems. Polar Biol 28:351–365

    Article  Google Scholar 

  • Pütter AFR (1909) Die Ernährung der Wassertiere und der Stoffhaushalt der Gewasser. Fischer, Jena

    Google Scholar 

  • Rivkin RB (1991) Seasonal patterns of planktonic production in McMurdo Sound, Antarctica. Am Zool 31:5–16

    Google Scholar 

  • Rivkin RB, Bosch I, Pearse JS, Lessard EJ (1986) Bacterivory: a novel feeding mode for asteroid larvae. Science 233:1311–1314

    Article  PubMed  CAS  Google Scholar 

  • Saier MH Jr (1999) A functional-phylogenetic system for the classification of transport proteins. J Cell Biochem Suppl 32–33:84–94

    Article  Google Scholar 

  • Shilling FM, Manahan DT (1994) Energy metabolism and amino acid transport during early development of Antarctic and temperate echinoderms. Biol Bull 187:398–407

    Article  CAS  Google Scholar 

  • Stanwell-Smith D, Peck LS (1998) Temperature and embryonic development in relation to spawning and field occurrence of larvae of three Antarctic echinoderms. Biol Bull 194:44–52

    Article  Google Scholar 

  • Stephens GC (1988) Epidermal amino acid transport in marine invertebrates. Biochim Biophys Acta 947:113–138

    Article  PubMed  CAS  Google Scholar 

  • Stephens GC, Schinske RA (1961) Uptake of amino acids by marine invertebrates. Limnol Oceanogr 6:175–181

    Article  Google Scholar 

  • Stevens BR (2010) Amino acid transport by epithelial membranes. In: Gerencser GA (ed) Epithelial transport physiology. Humana Press Inc., New Jersey, pp 353–378

    Chapter  Google Scholar 

  • Welborn JR, Manahan DT (1991) Seasonal changes in the concentration of amino acids and sugars in McMurdo Sound, Antarctica: uptake of amino acids by asteroid larvae. Antarct J US 26:60–162

    Google Scholar 

  • Wright SH, Manahan DT (1989) Integumental nutrient uptake by aquatic organisms. Annu Rev Physiol 51:585–600

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was undertaken, in part, during the Antarctic Biology Course (National Science Foundation Grant 05-1234124) and by National Science Foundation Grant 01-0980987 to DTM. The authors wish to thank the diving team (Addie Coyac and Jim Leichter) and students (Dafne Eerkes-Medrano, Rob Ellis, Nimrod Kiss, Josh Osterberg, and Sam Rastrick) who assisted with collecting samples from adult echinoderms in McMurdo Sound and Michael Sheng for laboratory assistance. Our thanks to Dr. Ken Hallanych, Alexis Janosik, and Johanna Cannon for sharing information from their RNA analysis of O. validus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott L. Applebaum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Applebaum, S.L., Ginsburg, D.W., Capron, C.S. et al. Expression of amino acid transporter genes in developmental stages and adult tissues of Antarctic echinoderms. Polar Biol 36, 1257–1267 (2013). https://doi.org/10.1007/s00300-013-1345-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-013-1345-1

Keywords

Navigation