Shifts in Antarctic megabenthic structure after ice-shelf disintegration in the Larsen area east of the Antarctic Peninsula

An Erratum to this article was published on 24 January 2014

Abstract

The aim of this study was to contribute to a general understanding of the response of the Antarctic macrobenthos to environmental variability and climate-induced changes. The change in population size of selected macrobenthic organisms was investigated in the Larsen A area east of the Antarctic Peninsula in 2007 and 2011 using ROV-based imaging methods. The results were complemented by data from the Larsen B collected in 2007 to allow a conceptual reconstruction of the environment-driven changes before the period of investigation. Both Larsen areas are characterised by ice-shelf disintegration in 1995 and 2002, respectively, as well as high inter-annual variability in sea-ice cover and oceanographic conditions. In 2007 one ascidian species, Molgula pedunculata, was abundant north and south of the stripe of remaining ice shelf between Larsen A and B. Population densities decreased drastically in the Larsen A between 2007 and 2011, coincident with the decrease in Corella eumyota, another ascidian. Among the ophiuroids, the population of deposit feeders increased, while suspension feeders halved their abundance. Current measurements indicated a northward flow between the Larsen B and Larsen A, suggesting that a major physical forcing on benthic population development comes from the South. The results demonstrate that Antarctic macrobenthic populations can exhibit dramatic population dynamics. Analyses of sea-ice dynamics, salinity, temperature and surprisingly ice-shelf disintegration history, however, did not provide any clear evidence for environmental drivers underlying the apparent changes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Arnaud PM, López CM, Olaso I, Ramil F, Ramos-Esplá RA (1998) Semi-quantitative study of macrobenthic fauna in the region of the South Shetland Islands and the Antarctic Peninsula. Polar Biol 19:160–166

    Article  Google Scholar 

  2. Arrigo KR, van Dijken GL, Ainley DG, Fahnstock MA, Markus T (2002) Ecological impact of a large Antarctic iceberg. Geophys Res Lett 29(7). doi:10.1029/2001GL014160

  3. Barnes DKA, Conlan K (2007) Disturbance, colonization and development of Antarctic benthic communities. Phil Trans R Soc B 362:11–38

    PubMed  Article  Google Scholar 

  4. Barnes DKA, Souster T (2011) Reduced survival of Antarctic benthos linked to climate-induced iceberg scouring. Nat Clim Chang 1:365–368

    Article  Google Scholar 

  5. Bertolin ML, Schloss IR (2009) Phytoplankton production after the collapse of the Larsen A Ice Shelf, Antarctica. Polar Biol 32:1435–1446

    Article  Google Scholar 

  6. Dahm C (1999) Ophiuroids (Echinodermata) of southern Chile and the Antarctic: taxonomy, biomass, diet and growth of dominant species. Sci Mar 63:427–432

    Article  Google Scholar 

  7. Dayton PK (1979) Observations of growth, dispersal and population dynamics of some sponges in McMurdo Sound, Antarctica. Colloques internationaux du C.N.R.S. Biologie des Spongiaires 291:271–282

    Google Scholar 

  8. Dayton PK (1989) Interdecadal recruitment and destruction of an Antarctic sponge population and its effect on local populations of Asteroids. Science 245:1484–1486

    CAS  PubMed  Article  Google Scholar 

  9. Dayton PK (1990) Polar Benthos. In: Smith WO (ed) Polar oceanography, part B: chemistry, biology, and geology. Academic Press, London, pp 631–685

    Chapter  Google Scholar 

  10. Dayton PK, Kim S, Jarrell SC, Oliver JS, Hammerstrom K, Fisher JL, O’Connor K, Barber JS, Robillard G, Barry J, Thurber AR, Conlan K (2013) Recruitment, growth and mortality of an Antarctic hexactinellid sponge, Anoxycalyx joubini. PLoS ONE 8(2):e56939. doi:10.1371/journal.pone.0056939

  11. Fell HB, Holzinger T, Sherraden M (1969) Ophiuroides. In: Bushnell VC, Hedgpeth JW (eds) Antarctic map folio series. American Geographical Society Folio, vol 11, pp 42–43

  12. Fillinger L, Funke T (2012) A new 3-D-modelling method to extract subtransect dimensions from underwater videos. Ocean Sci Discuss 9:1–39. doi:10.5194/osd-9-3879

    Article  Google Scholar 

  13. Gallardo VA (1987) The sublittoral macrofaunal benthos of the Antarctic Shelf. Environ Int 13:71–81

    Article  Google Scholar 

  14. Gutt J (2001) On the direct impact of ice on marine benthic communities, a review. Polar Biol 24:553–564

    Article  Google Scholar 

  15. Gutt J (2008) The Expedition ANTARKTIS-XXIII/8 of the Research Vessel “Polarstern” in 2006/2007. Ber Polarforsch Meeresforsch 569:1–152

    Google Scholar 

  16. Gutt J, Piepenburg D (2003) Scale-dependent impact on diversity of Antarctic benthos caused by grounding of icebergs. Mar Ecol Progr Ser 253:77–83

    Article  Google Scholar 

  17. Gutt J, Schickan T (1998) Epibiotic relationships on the Antarctic benthos. Antarct Sci 10:398–405

    Article  Google Scholar 

  18. Gutt J, Starmans A (2001) Quantification of iceberg impact and benthic recolonisation patterns in the Weddell Sea (Antarctica). Polar Biol 24:615–619

    Google Scholar 

  19. Gutt J, Starmans A (2003) Patchiness of the megabenthos at small scales: ecological conclusions by examples from polar shelves. Polar Biol 26:276–278

    Google Scholar 

  20. Gutt J, Barratt I, Domack E, d’Udekem d’Acoz C, Dimmler W, Grémare A, Heilmayer O, Isla E, Janussen D, Jorgensen E, Kock K-H, Lehnert LS, López-Gonzáles P, Langner S, Linse K, Manjón-Cabeza ME, Meißner M, Montiel A, Raes M, Robert H, Rose A, Sañé Schepisi E, Saucède T, Scheidat M, Schenke H-W, Seiler J, Smith C (2011) Biodiversity change after climate-induced ice-shelf collapse in the Antarctic. Deep-Sea Res II 58:74–83

    Article  Google Scholar 

  21. Haran T, Bohlander J, Scambos T, Painter T, Fahnestock M (compilers) (2005, updated 2006) MODIS mosaic of Antarctica (MOA) image map. Boulder, Colorado USA: National Snow and Ice Data Center. Digital media. http://nsidc.org/data/moa/. Accessed 1 January 2013

  22. Knust R, Gerdes D, Mintenbeck K (2012) The Expedition of the Research Vessel “Polarstern” to the Antarctic in 2011 (ANT-XXVII/3) (CAMBIO). Ber Polarforsch Meeresforsch 644:1–200

    Google Scholar 

  23. Koplowitz G, McClintock JB, Amsler C, Baker BJ (2009) Palatability and chemical anti-predatory defences in common ascidians from Antarctic Peninsula. Aquatic Biol 7:81–92

    Article  Google Scholar 

  24. Kott P (1969) Ascidiacea. In: Bushnell VC, Hedgpeth JW (eds) Antarctic map folio series. American Geographical Society Folio, vol 11, pp 43–44

  25. Lambert G, Lambert CC (1987) Spicule formation in the solitary ascidian, Herdmania momus. J Morphol 192:145–159

    Article  Google Scholar 

  26. López-Legentil S, Turon X, Schupp P (2006) Chemical and physical defenses against predators in Cystodytes (Ascidiacea). J Exp Mar Biol Ecol 332:27–36

    Article  Google Scholar 

  27. Manjon-Cabeza ME, Ramos A (2003) Ophiuroid community structure of the South Shetland Islands and Antarctic Peninsula region. Polar Biol 26:691–699

    Article  Google Scholar 

  28. Marshall GJ, Orr A, van Lipzig NPM, King JC (2006) The impact of a changing Southern Hemisphere Annular Mode on Antarctic Peninsula summer temperatures. J Clim 19(20):5388–5404

    Article  Google Scholar 

  29. McClintock JB, Baker BJ, Hamann MT, Yoshida W, Slattery M, Heine JN, Bryan PJ, Jayatilake GS, Moon BH (1994) Homarine as a feeding deterrent in common shallow-water antarctic lamellarian gastropod Marseniopsis mollis: a rare example of chemical defense in a marine prosobranch. J Chem Ecol 20(10):2539–2549

    CAS  PubMed  Article  Google Scholar 

  30. Monniot C, Monniot F (1983) Ascidies Antarctiques et Subantarctiques: morphologie et Biogeographie. Mem Mus Natl Hist Nat Ser A Zool 125:1–135

    Google Scholar 

  31. Piepenburg D, Schmid MK, Gerdes D (2002) The benthos off King George Island (South Shetland Islands, Antarctica): further evidence for a lack of a latitude biomass cline in the Southern Ocean. Polar Biol 25:146–158

    Google Scholar 

  32. Sahade R, Tatián M, Kowalke J, Kühne S, Esnal GB (1998) Benthic faunal associations on soft substrates at Potter Cove, King George Island, Antarctica. Polar Biol 19:85–91

    Article  Google Scholar 

  33. Sanamyan K (2012) Molgula pedunculata Herdman, 1881. In: Shenkar N, Gittenberger A, Lambert G, Rius M, Moreira Da Rocha R, Swalla BJ, Turron X (eds) Ascidiacea World Database. http://www.marinespecies.org/ascidiacea./aphia.php?p=taxdetails&id=173279. Accessed 31 December 2012

  34. Sañé E, Isla E, Grémare A, Gutt J, Vétion G, DeMaster DJ (2011) Pigments in sediments beneath recently collapsed ice shelves: the case of Larsen A and B shelves, Antarctic Peninsula. J Sea Res 65:94–102

    Article  Google Scholar 

  35. Scambos T, Bohlander J, Raup B (1996) Images of Antarctic ice shelves. Boulder, Colorado, USA: National Snow and Ice Data Center. Digital media. http://nsidc.org/data/iceshelves_images/. Accessed 31 December 2012

  36. Skvarca P, De Angelis H (2003) Impact assessment of regional climatic warming on glaciers and ice shelves of the northeastern Antarctic Peninsula. Antarct Res Ser 79:69–78

    Article  Google Scholar 

  37. Smith CR, Grange LJ, Honig DL, Naudts L, Huber B, Guidi L, Domack E (2012) A large population of king crabs in Palmer Deep on the west Antarctic Peninsula shelf and potential invasive impacts. Proc R Soc B 279:1017–1026

    PubMed  Article  Google Scholar 

  38. Spreen G, Kaleschke L, Heygster G (2008) Sea ice remote sensing using AMSR-E 89-GHz channels. J Geophys Res 113:C02S03. doi:10.1029/2005JC003384

    Article  Google Scholar 

  39. Sumida PYG, Bernadino AF, Stedall VP, Glover AG, Smith CR (2008) Temporal changes in benthic megafaunal abundance and composition across the West Antarctic Peninsula shelf: results from video surveys. Deep-Sea Res II 55:2465–2477

    Article  Google Scholar 

  40. Torre L, Servetto N, Eöry ML, Momo F, Tatián M, Abele D, Sahade R (2012) Respiratory responses of three Antarctic ascidians and a sea pen to increase sediment concentrations. Polar Biol 35:1743–1748

    Article  Google Scholar 

  41. Turner J, Marshall GJ (2011) Climate change in the Polar Regions. Cambridge University Press, Cambridge

    Book  Google Scholar 

  42. Turner J, Bindschadler R, Convey P, di Prisco G, Fahrbach E, Gutt J, Hodgson D, Mayewsky P, Summerhayes C (2009) Antarctic climate change and the environment. SCAR, Scott Polar Research Institute, Cambridge

    Google Scholar 

Download references

Acknowledgments

Thanks are due to those who made a repetitive study in such an area of very difficult accessibility possible, referees, science managers, the crew of “Polarstern” and to the experts that helped with the identification of taxa (s.l.), A. Boetius, M. Taitán, R. Sahade and C. Sands. M. Cape was funded by the US National Science Foundation (NSF) grant ANT-0732983, the US National Aeronautics and Space Administration (NASA) award 12-EARTH12F-0091 and a US NSF Graduate Research Fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Julian Gutt.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gutt, J., Cape, M., Dimmler, W. et al. Shifts in Antarctic megabenthic structure after ice-shelf disintegration in the Larsen area east of the Antarctic Peninsula. Polar Biol 36, 895–906 (2013). https://doi.org/10.1007/s00300-013-1315-7

Download citation

Keywords

  • Ascidians
  • Ophiuroids
  • Population growth
  • Population collapse
  • Climate change
  • Interannual sea-ice dynamics
  • Current regime