Skip to main content

Soil microbial carbon and nitrogen transformations at a glacial foreland on Anvers Island, Antarctic Peninsula

Abstract

Microbial communities can play a critical role in soil development and succession at glacial forelands through their contribution to soil carbon (C) and nitrogen (N) cycling. Using a combination of molecular fingerprinting techniques and metabolic rate measurements, we examined the soil microbial community composition and key transformations in the C and N cycles at a glacial foreland on Anvers Island along the Antarctic Peninsula. Soils were sampled along transects representing a chronosequence of <1 to approximately 10 years since deglaciation. The soil microbial community was active adjacent to the receding edge of the glacier, where soil had been ice-free for <1 year. A survey of the microbial community composition identified typical soil bacterial species such as Arthrobacter and Sphingomonas, as well as known Antarctic heterotrophs, cyanobacteria and fungi. The soil C cycle over this zone was dominated by phototrophic microbial activity, while the N cycle was dominated by heterotrophic N2-fixation and not cyanobacterial N2-fixation as found at other recently deglaciated forelands. Other N transformations such as ammonia oxidation and denitrification appeared to be of limited relevance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Altschul S, Madden T, Schaffer A, Zhang JH, Zhang Z, Miller W, Lipman D (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Google Scholar 

  • Bates S, Garcia-Pichel F (2009) A culture-independent study of free-living fungi in biological soil crusts of the Colorado Plateau: their diversity and relative contribution to microbial biomass. Environ Microbiol 11:56–67

    PubMed  Article  CAS  Google Scholar 

  • Belnap J (2002) Nitrogen fixation in biological soil crusts from southeast Utah, USA. Biol Fert Soils 35:128–135

    Article  CAS  Google Scholar 

  • Bölter M (2011) Soil development and soil biology on King George Island, Maritime Antarctic. Pol Polar Res 32:105–116

    Google Scholar 

  • Bölter M, Kandeler E, Pietr SJ, Seppelt RD (2002) Heterotrophic microbes, microbial and enzymatic activity in Antarctic soils. In: Beyer L, Bölter M (eds) Geoecology of Antarctic ice-free coastal landscapes. Springer, Berlin, pp 189–214

    Chapter  Google Scholar 

  • Brankatschk R, Towe S, Kleineidam K, Schloter M, Zeyer J (2010) Abundances and potential activities of nitrogen cycling microbial communities along a chronosequence of a glacier forefield. ISME J 5:1025–1037

    PubMed  Article  Google Scholar 

  • Brinkmann M, Pearce DA, Convey P, Ott S (2007) The cyanobacterial community of polygon soils at an inland Antarctic nunatak. Polar Biol 30:1505–1511

    Article  Google Scholar 

  • Casamatta DA, Johansen JR, Vis ML, Broadwater ST (2005) Molecular and morphological characterization of ten polar and near-polar strains within the Oscillatoriales (Cyanobacteria). J Phycol 41:421–438

    Article  CAS  Google Scholar 

  • Chapin FS, Walker LR, Fastie CL, Sharman LC (1994) Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecol Monogr 64:149–175

    Article  Google Scholar 

  • Chong CW, Dunn MJ, Convey P, Tan GYA, Wong RCS, Tan IKP (2009) Environmental influences on bacterial diversity of soils on Signy Island, maritime Antarctic. Polar Biol 32:1571–1582

    Article  Google Scholar 

  • Chong CW, Pearce DA, Convey P, Tan GYA, Wong RCS, Tan IKP (2010) High levels of spatial heterogeneity in the biodiversity of soil prokaryotes on Signy Island, Antarctica. Soil Biol Biochem 42:601–610

    Article  CAS  Google Scholar 

  • Christie P (1987) Nitrogen in two contrasting Antarctic bryophyte communities. J Ecol 75:73–93

    Article  CAS  Google Scholar 

  • Cocolin L, Manzano M, Aggio D, Cantoni C, Comi G (2001) A novel polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) for the identification of Micrococcaceae strains involved in meat fermentations: its application to naturally fermented Italian sausages. Meat Sci 57:59–64

    Article  Google Scholar 

  • Connell L, Redman R, Craig S, Rodriguez R (2006) Distribution and abundance of fungi in the soils of Taylor Valley, Antarctica. Soil Biol Biochem 38:3083–3094

    Article  CAS  Google Scholar 

  • Cook AJ, Fox AJ, Vaughan DG, Ferrigno JG (2005) Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science 308:541–544

    PubMed  Article  CAS  Google Scholar 

  • Cooper W (1923) The recent ecological history of Glacier Bay, Alaska: the present vegetation cycle. Ecol 4:223–246

    Article  Google Scholar 

  • Cooper W (1937) The problem of Glacier Bay, Alaska: a study of glacier variations. Geogr Rev 27:37–62

    Article  Google Scholar 

  • Crocker RL, Major J (1955) Soil development in relation to vegetation and surface age at Glacier Bay, Alaska. J Ecol 43:427–448

    Article  Google Scholar 

  • Davey A (1982) In situ determination of nitrogen fixation in Antarctica using a high sensitivity portable gas chromatograph. Austr J Ecol 7:395–402

    Article  CAS  Google Scholar 

  • Day TA, Ruhland CT, Grobe CW, Xiong FS (1999) Growth and reproduction of Antarctic vascular plants in response to warming and UV-B radiation reductions in the field. Oecologia 119:24–35

    Article  Google Scholar 

  • Day TA, Ruhland CT, Strauss S, Park JH, Krieg M, Krna M, Bryant D (2009) Response of plants and the dominant microarthropod, Cryptopygus antarcticus, to warming and contrasting precipitation regimes in Antarctic tundra. Glob Change Biol 15:1640–1651

    Article  Google Scholar 

  • de Caire GZ, de Cano MS, de Mule MC, Palma RM, Colombo K (1997) Exopolysaccharide of Nostoc muscorum (Cyanobacteria) in the aggregation of soil particles. J Appl Phycol 9:249–253

    Article  Google Scholar 

  • Deiglmayr K, Philippot L, Tscherko D, Kandeler E (2006) Microbial succession of nitrate-reducing bacteria in the rhizosphere of Poa alpina across a glacier foreland in the Central Alps. Environ Microbiol 8:1600–1612

    PubMed  Article  CAS  Google Scholar 

  • Dilly O (2001) Microbial respiratory quotient during basal metabolism and after glucose amendment in soils and litter. Soil Biol Biochem 33:117–127

    Article  CAS  Google Scholar 

  • Duc L, Noll M, Meier BE, Burgmann H, Zeyer J (2009) High diversity of diazotrophs in the forefield of a receding alpine glacier. Microb Ecol 57:179–190

    PubMed  Article  Google Scholar 

  • Foght J, Aislabie J, Turner S, Brown CE, Ryburn J, Saul DJ, Lawson W (2004) Culturable bacteria in subglacial sediments and ice from two Southern Hemisphere glaciers. Microb Ecol 47:329–340

    PubMed  Article  CAS  Google Scholar 

  • Freeman KR, Pescador MY, Reed SC, Costello EK, Robeson MS, Schmidt SK (2009) Soil CO2 flux and photoautotrophic community composition in high-elevation, ‘barren’ soil. Environ Microbiol 11:674–686

    PubMed  Article  CAS  Google Scholar 

  • Garcia-Pichel F, Wojciechowski MF (2009) The evolution of a capacity to build supra-cellular ropesenabled filamentous cyanobacteria to colonize highly erodible substrates. PLoS ONE 4:e7801. doi:10.1371/journal.pone.0007801

    PubMed  Article  Google Scholar 

  • Garcia-Pichel F, Wade BD, Farmer JD (2002) Jet-suspended, calcite-ballasted cyanobacterial waterwarts in a desert spring. J Phycol 38:420–428

    Google Scholar 

  • Garcia-Pichel F, Johnson SL, Youngkin D, Belnap J (2003) Small-scale vertical distribution of bacterial biomass and diversity in biological soil crusts from arid lands in the Colorado Plateau. Microb Ecol 46:312–321

    PubMed  Article  CAS  Google Scholar 

  • Groffmann PM, Tiedje JM (1989) Denitrification in north temperate forest soils—spatial and temporal patterns at the landscape and seasonal scales. Soil Biol Biochem 21:613–620

    Article  Google Scholar 

  • Gundlapally SR, Garcia-Pichel F (2006) The community and phylogenetic diversity of biological soil crusts in the Colorado Plateau studied by molecular fingerprinting and intensive cultivation. Microb Ecol 52:345–357

    PubMed  Article  Google Scholar 

  • Hardy RWF, Burns RC, Holsten RD (1973) Applications of the acetylene ethylene assay for measurement of nitrogen fixation. Soil Biol Biochem 5:47–81

    Article  CAS  Google Scholar 

  • Hodkinson ID, Coulson SJ, Webb NR (2003) Community assembly along proglacial chronosequences in the high Arctic: vegetation and soil development in north-west Svalbard. J Ecol 91:651–663

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of the working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microb 72:1719–1728

    Article  CAS  Google Scholar 

  • Jenny H (1941) Factors of soil formation: a system of quantitative pedology. Dover, New York

    Google Scholar 

  • Jenny H (1980) The soil resource: origin and behavior. Springer, New York

    Google Scholar 

  • Johnson SL, Budinoff CR, Belnap J, Garcia-Pichel F (2005) Relevance of ammonium oxidation within biological soil crust communities. Environ Microbiol 7:1–12

    PubMed  Article  CAS  Google Scholar 

  • Kastovska K, Elster J, Stibal M, Santruckova H (2005) Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (high Arctic). Microb Ecol 50:396–407

    PubMed  Article  Google Scholar 

  • Klammer S, Mondini C, Insam H (2005) Microbial community fingerprints of composts stored under different conditions. Ann Microb 55:299–305

    CAS  Google Scholar 

  • Matthews J (1992) The ecology of recently-deglaciated terrain: a geoecological approach to glacier forelands and primary succession. Cambridge University Press, Cambridge

    Google Scholar 

  • Minitab 15 Statistical Software (2006) [Computer software], State College, Minitab, Inc., PA. www.minitab.com

  • Muyzer G, Teske A, Wirsen CO, Jannasch HW (1995) Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel-electrophoresis of 16S rDNA fragments. Arch Microbiol 164:165–172

    PubMed  Article  CAS  Google Scholar 

  • Nemergut DR, Anderson SP, Cleveland CC, Martin AP, Miller AE, Seimon A, Schmidt SK (2007) Microbial community succession in an unvegetated, recently deglaciated soil. Microb Ecol 53:110–122

    PubMed  Article  Google Scholar 

  • Nicol GW, Tscherko D, Embley TM, Prosser JI (2005) Primary succession of soil Crenarchaeota across a receding glacier foreland. Environ Microbiol 7:337–347

    PubMed  Article  CAS  Google Scholar 

  • Nohrstedt H-O (1983) Conversion factor between acetylene reduction and nitrogen fixation in soil: effect of water content and nitrogenase activity. Soil Biol Biochem 15:275–279

    Article  CAS  Google Scholar 

  • Novis PM, Whitehead D, Gregorich EG, Hunt JE, Sparrow AD, Hopkins DW, Elberling B, Greenfield LG (2007) Annual carbon fixation in terrestrial populations of Nostoc commune (Cyanobacteria) from an Antarctic dry valley is driven by temperature regime. Glob Change Biol 13:1224–1237

    Article  Google Scholar 

  • Nübel U, Garcia-Pichel F, Kuhl M, Muyzer G (1999) Quantifying microbial diversity: morphotypes, 16S rRNA genes, and carotenoids of oxygenic phototrophs in microbial mats. Appl Environ Microb 65:422–430

    Google Scholar 

  • O’Donnell K (1993) Fusarium and its near relatives. In: Reynolds D, Taylor J (eds) The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. CAB International, Wallingford, pp 225–233

    Google Scholar 

  • Ohtonen R, Fritze H, Pennanen T, Jumpponen A, Trappe JM (1999) Ecosystem properties and microbial community changes in primary succession on a glacier forefront. Oecologia 119:239–246

    Article  Google Scholar 

  • Pandey KD, Shukla SP, Shukla PN, Giri DD, Singh JS, Singh P, Kashyap AK (2004) Cyanobacteria in Antarctica: ecology, physiology and cold adaptation. Cell Mol Biol 50:575–584

    PubMed  CAS  Google Scholar 

  • Poly F, Ranjard L, Nazaret S, Gourbiere F, Monrozier LJ (2001) Comparison of nifH gene pools in soils and soil microenvironments with contrasting properties. Appl Environ Microb 67:2255–2262

    Article  CAS  Google Scholar 

  • Sattin SR, Cleveland CC, Hood E, Reed SC, King AJ, Schmidt SK, Robeson MS, Ascarrunz N, Nemergut DR (2009) Functional shifts in unvegetated, perhumid, recently-deglaciated soils do not correlate with shifts in soil bacterial community composition. J Microbiol 47:673–681

    PubMed  Article  Google Scholar 

  • Schmidt SK, Reed SC, Nemergut DR, Grandy AS, Cleveland CC, Weintraub MN, Hill AW, Costello EK, Meyer AF, Neff JC, Martin AM (2008) The earliest stages of ecosystem succession in high-elevation (5000 metres above sea level), recently deglaciated soils. P Roy Soc B Biol Sci 275:2793–2802

    Article  CAS  Google Scholar 

  • Sigler WV, Zeyer J (2002) Microbial diversity and activity along the forefields of two receding glaciers. Microb Ecol 43:397–407

    PubMed  Article  CAS  Google Scholar 

  • Smith RIL (1996) Terrestrial and freshwater biotic components of the western Antarctic Peninsula. In: Ross RM, Hofmann EE, Quetin LB (eds) Foundations for ecological research west of the Antarctic Peninsula, vol 70. America Geophysical Union, Washington, DC, pp 15–59

    Chapter  Google Scholar 

  • Sorensen PL, Jonasson S, Michelsen A (2006) Nitrogen fixation, denitrification, and ecosystem nitrogen pools in relation to vegetation development in the subarctic. Arctic Antarct Alp Res 38:263–272

    Article  Google Scholar 

  • Stal L, Moezelaar R (1997) Fermentation in cyanobacteria. FEMS Microbiol Rev 21:179–211

    Article  CAS  Google Scholar 

  • Stibal M, Sabacka M, Kastovska K (2006) Microbial communities on glacier surfaces in Svalbard: impact of physical and chemical properties on abundance and structure of cyanobacteria and algae. Microb Ecol 52:644–654

    PubMed  Article  Google Scholar 

  • Strauss S, Ruhland CT, Day TA (2009) Trends in soil characteristics along a recently deglaciated foreland on Anvers Island, Antarctic Peninsula. Polar Biol 32:1779–1788

    Article  Google Scholar 

  • Strauss SL, Day TA, Garcia-Pichel F (2012) Nitrogen cycling in desert biological soil crusts across biogeographic regions in the Southwestern United States. Biogeochemistry 108:171–182

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    PubMed  Article  CAS  Google Scholar 

  • Taton A, Grubisic S, Brambilla E, De Wit R, Wilmotte A (2003) Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl Environ Microb 69:5157–5169

    Article  CAS  Google Scholar 

  • Taylor J, Wilson B, Mills M, Burns R (2002) Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biol Biochem 34:387–401

    Article  CAS  Google Scholar 

  • Thamdrup B, Dalsgaard T (2002) Production of N-2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl Environ Microb 68:1312–1318

    Article  CAS  Google Scholar 

  • Tscherko D, Rustemeier J, Richter A, Wanek W, Kandleler E (2003) Functional diversity of the soil microflora in primary succession across two glacier forelands in the Central Alps. Eur J Soil Sci 54:685–696

    Article  Google Scholar 

  • Tzeneva VA, Salles JF, Naumova N, de Vos WM, Kuikman PJ, Dolfin J, Smidt H (2009) Effect of soil sample preservation, compared to the effect of other environmental variables, on bacterial and eukaryotic diversity. Res Microb 160:89–98

    Article  CAS  Google Scholar 

  • van de Graaf AA, Mulder A, Debruijn P, Jetten MSM, Robertson LA, Kuenen JG (1995) Anaerobic oxidation of ammonium is a biologically mediated process. Appl Environ Microb 61:1246–1251

    Google Scholar 

  • Vaughan DG, Doake CSM (1996) Recent atmospheric warming and retreat of ice shelves on the Antarctic Peninsula. Nature 379:328–331

    Article  CAS  Google Scholar 

  • Vincent WF (1988) Microbial ecosystems of Antarctica. Cambridge University Press, Cambridge

    Google Scholar 

  • Vitousek PM, Cassman K, Cleveland C, Crews T, Field CB, Grimm NB, Howarth RW, Marino R, Martinelli L, Rastetter EB, Sprent JI (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57:1–45

    Article  Google Scholar 

  • Wynn-Williams DD (1982) Simulation of seasonal changes in microbial activity of maritime Antarctic peat. Soil Biol Biochem 14:1–12

    Article  CAS  Google Scholar 

  • Wynn-Williams DD (1996) Response of pioneer soil microalgal colonists to environmental change in Antarctica. Microb Ecol 31:177–188

    Article  Google Scholar 

  • Yergeau E, Kowalchuk GA (2008) Responses of Antarctic soil microbial communities and associated functions to temperature and freeze-thaw cycle frequency. Environ Microb 10:2223–2235

    Article  Google Scholar 

  • Yergeau E, Newsham KK, Pearce DA, Kowalchuk GA (2007) Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environ Microb 9:2670–2682

    Article  CAS  Google Scholar 

  • Yoshitake S, Uchida M, Koizumi H, Kanda H, Nakatsubo T (2010) Production of biological soil crusts in the early stage of primary succession on a High Arctic glacier foreland. New Phytol 186:451–460

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

We thank personnel at Palmer Station and Raytheon Polar Services Company for their assistance in sample collection, administrative and logistical support. We thank Phil Spindler for his assistance in sample collection during the 2007–2008 field season. We also thank Scott Bates, Jessica Groch, and Ruth Potrafka for their assistance in the laboratory. This work was supported by National Science Foundation grant OPP-0230579.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah L. Strauss.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 149 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Strauss, S.L., Garcia-Pichel, F. & Day, T.A. Soil microbial carbon and nitrogen transformations at a glacial foreland on Anvers Island, Antarctic Peninsula. Polar Biol 35, 1459–1471 (2012). https://doi.org/10.1007/s00300-012-1184-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-012-1184-5

Keywords

  • Glacial foreland
  • Soil development
  • Nitrogen cycle
  • Nitrogen fixation
  • Succession