Polar Biology

, Volume 35, Issue 7, pp 1073–1086 | Cite as

Comparative population genetics of seven notothenioid fish species reveals high levels of gene flow along ocean currents in the southern Scotia Arc, Antarctica

  • Malte Damerau
  • Michael Matschiner
  • Walter Salzburger
  • Reinhold Hanel
Original Paper

Abstract

The Antarctic fish fauna is characterized by high endemism and low species diversity with one perciform suborder, the Notothenioidei, dominating the whole species assemblage on the shelves and slopes. Notothenioids diversified in situ through adaptive radiation and show a variety of life history strategies as adults ranging from benthic to pelagic modes. Their larval development is unusually long, lasting from a few months to more than a year, and generally includes a pelagic larval stage. Therefore, the advection of eggs and larvae with ocean currents is a key factor modulating population connectivity. Here, we compare the genetic population structures and gene flow of seven ecologically distinct notothenioid species of the southern Scotia Arc based on nuclear microsatellites and mitochondrial DNA sequences (D-loop/cytochrome b). The seven species belong to the families Nototheniidae (Gobionotothen gibberifrons, Lepidonotothen squamifrons, Trematomus eulepidotus, T. newnesi) and Channichthyidae (Chaenocephalus aceratus, Champsocephalus gunnari, Chionodraco rastrospinosus). Our results show low-population differentiation and high gene flow for all investigated species independent of their adult life history strategies. In addition, gene flow is primarily in congruence with the prevailing ocean current system, highlighting the role of larval dispersal in population structuring of notothenioids.

Keywords

Notothenioids Adaptive radiation Scotia Arc Dispersal Isolation-with-migration Population genetics 

Notes

Acknowledgments

We are grateful to Christopher D. Jones from NOAA (National Oceanic and Atmospheric Administration) and all scientists and crew members who helped with sampling and species identification during the US AMLR (United States Antarctic Marine Living Resources Program) 2009 finfish survey aboard RV Yuzhmorgeologiya. We further thank Karl-Hermann Kock from the Institute of Sea Fisheries (Hamburg) for sharing his invaluable knowledge about notothenioids and their ecology as well as all lab members who gave a helping hand, especially Brigitte Aeschbach and Sereina Rutschmann (Basel). We also thank two anonymous referees for their helpful suggestions on the manuscript. The study was funded by grant HA 4328/4 from the Deutsche Forschungsgemeinschaft (DFG-Priority Programme 1158) to RH and WS, and by a PhD scholarship of the VolkswagenStiftung to MM.

Supplementary material

300_2012_1155_MOESM1_ESM.pdf (89 kb)
Supplementary material 1 (PDF 89 kb)
300_2012_1155_MOESM2_ESM.pdf (111 kb)
Supplementary material 2 (PDF 110 kb)
300_2012_1155_MOESM3_ESM.pdf (135 kb)
Supplementary material 3 (PDF 134 kb)
300_2012_1155_MOESM4_ESM.pdf (595 kb)
Supplementary material 4 (PDF 595 kb)
300_2012_1155_MOESM5_ESM.pdf (94 kb)
Supplementary material 5 (PDF 94 kb)
300_2012_1155_MOESM6_ESM.pdf (139 kb)
Supplementary material 6 (PDF 139 kb)
300_2012_1155_MOESM7_ESM.pdf (88 kb)
Supplementary material 7 (PDF 88 kb)
300_2012_1155_MOESM8_ESM.pdf (443 kb)
Supplementary material 8 (PDF 442 kb)

References

  1. Andriashev AP (1987) A general review of the Antarctic bottom fish fauna. In: Kullander SO, Fernholm B (eds) Proceedings, fifth congress of European ichthyologists, Stockholm 1985. Swedish Museum of Natural History, Stockholm, pp 357–372Google Scholar
  2. Appleyard S, Ward R, Williams R (2002) Population structure of the Patagonian toothfish around Heard, McDonald and Macquarie Islands. Antarct Sci 14:364–373CrossRefGoogle Scholar
  3. Barnes DKA, Conlan KE (2007) Disturbance, colonization and development of Antarctic benthic communities. Phil Trans R Soc B 362:11–38PubMedCrossRefGoogle Scholar
  4. Bay LK, Crozier RH, Caley MJ (2006) The relationship between population genetic structure and pelagic larval duration in coral reef fishes on the Great Barrier Reef. Mar Biol 149:1247–1256CrossRefGoogle Scholar
  5. Belkhir K, Borsa P, Chikhi et al (2001) Genetix 402, logiciel sous Windows TM pour la génétique des populationsGoogle Scholar
  6. Briggs J (2003) Marine centres of origin as evolutionary engines. J Biogeogr 30:1–18CrossRefGoogle Scholar
  7. Casaux R, Mazzotta A, Barrera-Oro ER (1990) Seasonal aspects of the biology and diet of nearshore nototheniid fish at Potter Cove, South Shetland Islands, Antarctica. Polar Biol 11:63–72CrossRefGoogle Scholar
  8. Chapuis M, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631PubMedCrossRefGoogle Scholar
  9. Cheng CC (1998) Origin and mechanism of evolution of anti-freeze glycoproteins in polar fishes. In: Di Prisco G, Pisano E, Clarke A (eds) Fishes of Antarctica. A biological overview. Springer, Milan, pp 311–328Google Scholar
  10. Clarke A, Johnston I (1996) Evolution and adaptive radiation of Antarctic fish. Trends Ecol Evol 11:212–218PubMedCrossRefGoogle Scholar
  11. Cowen R, Sponaugle S (2009) Larval dispersal and marine population connectivity. Annu Rev Mar Sci 1:443–466CrossRefGoogle Scholar
  12. Daniels R (1982) Feeding ecology of some fishes of the Antarctic Peninsula. Fish Bull US 80:575–588Google Scholar
  13. Dayton P, Mordida B, Bacon F (1994) Polar marine communities. Am Zool 34:90–99Google Scholar
  14. Derome N, Chen W, Dettai A et al (2002) Phylogeny of Antarctic dragonfishes (Bathydraconidae, Notothenioidei, Teleostei) and related families based on their anatomy and two mitochondrial genes. Mol Phylogenet Evol 24:139–152PubMedCrossRefGoogle Scholar
  15. Detrich H, Jones C, Kim S et al (2005) Nesting behavior of the icefish Chaenocephalus aceratus at Bouvetøya Island, Southern Ocean. Polar Biol 28:828–832CrossRefGoogle Scholar
  16. DeWitt HH, Heemstra PC, Gon O (1990) Nototheniidae. In: Gon O, Heemstra PC (eds) Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, Grahamstown, pp 279–380Google Scholar
  17. Duhamel G (1981) Caracteristiques biologiques des principales especes de poissons du plateau continental des Iles Kerguelen. Cybium 5:19–32Google Scholar
  18. Duhamel G, Ozouf-Costaz C (1985) Age, growth and reproductive biology of Notothenia squamifrons Gunther, 1880 from the Indian sector of the Southern Ocean. Polar Biol 4:143–153CrossRefGoogle Scholar
  19. Eastman JT (1991) Evolution and diversification of antarctic notothenioid fishes. Am Zool 31:93–109Google Scholar
  20. Eastman JT (1993) Antarctic fish biology: evolution in a unique environment. Academic Press, San DiegoGoogle Scholar
  21. Eastman JT (2000) Antarctic notothenioid fishes as subjects for research in evolutionary biology. Antarct Sci 12:276–287CrossRefGoogle Scholar
  22. Eastman JT (2005) The nature of the diversity of Antarctic fishes. Polar Biol 28:93–107CrossRefGoogle Scholar
  23. Eastman JT, McCune A (2000) Fishes on the Antarctic continental shelf: evolution of a marine species flock. J Fish Biol 57(Suppl A):84–102Google Scholar
  24. Ekau W (1989) Egg development of Trematomus eulepidotus Regan, 1914 (Nototheniidae, Pisces) from the Weddell Sea, Antarctica. Cybium 13:213–219Google Scholar
  25. Ekau W (1990) Demersal fish fauna of the Weddell Sea, Antarctica. Antarct Sci 2:129–137CrossRefGoogle Scholar
  26. Ekau W (1991) Reproduction in high Antarctic fishes (Notothenioidei). Meeresforsch 33:159–167Google Scholar
  27. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  28. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567PubMedCrossRefGoogle Scholar
  29. Fanta E, Meyer AA, Grötzner SR, Luvizotto MF (1994) Comparative study on feeding strategy and activity patterns of two Antarctic fish: Trematomus newnesi Boulenger, 1902 and Gobionotothen gibberifrons (Lonnberg, 1905) (Pisces, Nototheniidae) under different light conditions. Antarct Rec 38:13–29Google Scholar
  30. Garza J, Williamson E (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318PubMedCrossRefGoogle Scholar
  31. Glaubitz JC (2004) Convert: a user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Mol Ecol Notes 4:309–310CrossRefGoogle Scholar
  32. Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486Google Scholar
  33. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices, version 2.9.3. http://www2.unil.ch/popgen/softwares/fstat.htm
  34. Hej J, Nielsen R (2007) Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics. Proc Natl Acad Sci USA 104:2785–2790CrossRefGoogle Scholar
  35. Heywood KJ, Garabato A, Stevens D (2002) High mixing rates in the abyssal Southern Ocean. Nature 415:1011–1014PubMedCrossRefGoogle Scholar
  36. Hureau JC (1985) Channichthyidae. In: Fischer W, Hureau JC (eds) FAO species identification sheets for fishery purposes. Southern Ocean (Fishing areas 48, 58 and 88), vol 2. FAO, Rome, pp 261–277Google Scholar
  37. Iwami T, Kock KH (1990) Channichthyidae. In: Gon O, Heemstra PC (eds) Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, Grahamstown, pp 381–399Google Scholar
  38. Jones CD, Kock KH (2006) Standing stock, spatial distribution, and biological features of demersal finfish from the 2006 US AMLR bottom trawl survey of the northern Antarctic Peninsula and Joinville-D’Urville Islands (Subarea 48.1). WG-FSA-06/14. CCAMLR, HobartGoogle Scholar
  39. Kellermann AK (1986) Zur Biologie der Jugendstadien der Notothenioidei (Pisces) an der Antarktischen Halbinsel. Ber Polarforsch 31:1–155Google Scholar
  40. Kellermann AK (1989) The larval fish community in the zone of seasonal pack-ice cover and its seasonal and interannual variability. Arch Fisch Wiss 39(Beih 1):81–109Google Scholar
  41. Kock KH (1981) Fischereibiologische Untersuchungen an drei antarktischen Fischarten: Champsocephalus gunnari Lönnberg, 1905, Chaenocephalus aceratus (Lönnberg, 1906) und Pseudochaenichthys georgianus Norman, 1937 (Notothenioidei, Channichthyidae). Mitt Inst Seefisch Hambg 32:1–226Google Scholar
  42. Kock KH (1989) Reproduction in fish around Elephant Island. Arch Fisch Wiss 39(Beih 1):171–210Google Scholar
  43. Kock KH (1992) Antarctic fish and fisheries. Cambridge University Press, CambridgeGoogle Scholar
  44. Kock KH (2005a) Antarctic icefishes (Channichthyidae): a unique family of fishes. A review, part I. Polar Biol 28:862–895CrossRefGoogle Scholar
  45. Kock KH (2005b) Antarctic icefishes (Channichthyidae): a unique family of fishes. A review, part II. Polar Biol 28:897–909CrossRefGoogle Scholar
  46. Kock KH, Everson I (1997) Biology and ecology of mackerel icefish, Champsocephalus gunnari: an Antarctic fish lacking hemoglobin. Comp Biochem Physiol A 118:1067–1077CrossRefGoogle Scholar
  47. Kock KH, Jones CD (2005) Fish stocks in the southern Scotia Arc region—a review and prospects for future research. Rev Fish Sci 13:75–108CrossRefGoogle Scholar
  48. Kock KH, Kellermann AK (1991) Reproduction in Antarctic notothenioid fish. Antarct Sci 3:125–150CrossRefGoogle Scholar
  49. Kock KH, Möller H (1977) On the occurrence of the parasite copepod Eubrachiella antarctica on some Antarctic fish. Arch Fisch Wiss 28:149–156Google Scholar
  50. Kock KH, Jones CD, Wilhelms S (2001) Biological characteristics of Antarctic fish stocks in the southern Scotia Arc region. Ccamlr Sci 7:1–41Google Scholar
  51. Kuhn KL, Gaffney PM (2006) Preliminary assessment of population structure in the mackerel icefish (Champsocephalus gunnari). Polar Biol 29:927–935CrossRefGoogle Scholar
  52. Kuhn KL, Gaffney PM (2008) Population subdivision in the Antarctic toothfish (Dissostichus mawsoni) revealed by mitochondrial and nuclear single nucleotide polymorphisms (SNPs). Antarct Sci 20:327–338CrossRefGoogle Scholar
  53. La Mesa M, Ashford J (2008a) Age and growth of ocellated icefish, Chionodraco rastrospinosus DeWitt and Hureau, 1979, from the South Shetland Islands. Polar Biol 31:1333–1342CrossRefGoogle Scholar
  54. La Mesa M, Ashford J (2008b) Age and early life history of juvenile scotia sea icefish, Chaenocephalus aceratus, from Elephant and the South Shetland Islands. Polar Biol 31:221–228CrossRefGoogle Scholar
  55. La Mesa M, Vacchi M, Sertorio T (2000) Feeding plasticity of Trematomus newnesi (Pisces, Nototheniidae) in Terra Nova Bay, Ross Sea, in relation to environmental conditions. Polar Biol 23:38–45CrossRefGoogle Scholar
  56. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinforma 25:1451–1452CrossRefGoogle Scholar
  57. Lisovenko LA, Sil’yanova ZS (1979) The fecundity of some species of the family Nototheniidae in the Atlantic sector of the Southern Ocean. J Ichthyol 19:79–85Google Scholar
  58. Lisovenko LA, Sil’yanova ZS (1980) The reproduction and fecundity of fish of the family Chaenichthyidae. In: An ecological and biological description of some species of Antarctic Fishes. Trudy All-Union Institute for Fisheries Research and Oceanography, Moscow, pp 38–52Google Scholar
  59. Lisovenko LA, Zakharov GP (1988) On fecundity of the striped pike glassfish, Champsocephalus gunnari, in the region of South Georgia Island. J Ichthyol 27:131–134Google Scholar
  60. Loeb VJ, Kellermann AK, Koubbi P et al (1993) Antarctic larval fish assemblages: a review. Bull Mar Sci 53:416–449Google Scholar
  61. Lumpkin R, Pazos M (2007) Measuring surface currents with surface velocity program drifters: the instrument, the data, and some recent results. In: Mariano A et al (eds) Lagrangian analysis and prediction of coastal and ocean dynamics. Cambridge University Press, Cambridge, pp 39–67CrossRefGoogle Scholar
  62. Matschiner M, Salzburger W (2009) TANDEM: integrating automated allele binning into genetics and genomics workflows. Bioinforma 25:1982–1983CrossRefGoogle Scholar
  63. Matschiner M, Hanel R, Salzburger W (2009) Gene flow by larval dispersal in the Antarctic notothenioid fish Gobionotothen gibberifrons. Mol Ecol 18:2574–2587PubMedCrossRefGoogle Scholar
  64. Matschiner M, Hanel R, Salzburger W (2010) Phylogeography and speciation processes in marine fishes and fishes from large freshwater lakes. In: Rutgers DS (ed) Phylogeography. Concepts, intraspecific patterns and speciation processes. Nova Science Publishers, New York, pp 1–29Google Scholar
  65. Matschiner M, Hanel R, Salzburger W (2011) On the origin and trigger of the notothenioid adaptive radiation. PLoS one 6:e18911PubMedCrossRefGoogle Scholar
  66. Mills L, Allendorf F (1996) The one-migrant-per-generation rule in conservation and management. Conserv Biol 10:1509–1518CrossRefGoogle Scholar
  67. North AW (2001) Early life history strategies of notothenioids at South Georgia. J Fish Biol 58:496–505CrossRefGoogle Scholar
  68. North AW (2005) Mackerel icefish size and age differences and long-term change at South Georgia and Shag Rocks. J Fish Biol 67:1666–1685CrossRefGoogle Scholar
  69. Papetti C, Zane LL, Patarnello T (2006) Isolation and characterization of microsatellite loci in the icefish Chionodraco rastrospinosus (Perciformes, Notothenioidea, Channichthyidae). Mol Ecol Notes 6:207–209CrossRefGoogle Scholar
  70. Papetti C, Susana E, Patarnello T, Zane LL (2009) Spatial and temporal boundaries to gene flow between Chaenocephalus aceratus populations at South Orkney and South Shetlands. Mar Ecol Prog Ser 376:269–281CrossRefGoogle Scholar
  71. Parker R, Paige K, De Vries A (2002) Genetic variation among populations of the Antarctic toothfish: evolutionary insights and implications for conservation. Polar Biol 25:256–261Google Scholar
  72. Permitin Y (1973) Fecundity and reproductive biology of icefish (Chaenichthyidae), fish of the family Muarenolepidae and dragonfish (Bathydraconidae) of the Scotia Sea (Antarctica). J Ichthyol 13:204–215Google Scholar
  73. Permitin Y, Sil’yanova Z (1971) New data on the reproductive biology and fecundity of fishes of the genus Notothenia Rich. in the Scotia Sea (Antarctica). J Ichthyol 11:693–705Google Scholar
  74. Piry S, Luikart G, Cornuet J (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503CrossRefGoogle Scholar
  75. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256PubMedCrossRefGoogle Scholar
  76. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  77. Radtke R, Targett T, Kellermann AK et al (1989) Antarctic fish growth: profile of Trematomus newnesi. Mar Ecol Prog Ser 57:103–117CrossRefGoogle Scholar
  78. Raymond M, Rousset F (1995) Genepop (Version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  79. Rogers AD, Morley S, Fitzcharles E et al (2006) Genetic structure of Patagonian toothfish (Dissostichus eleginoides) populations on the Patagonian Shelf and Atlantic and western Indian Ocean Sectors of the Southern Ocean. Mar Biol 149:915–924CrossRefGoogle Scholar
  80. Rutschmann S, Matschiner M, Damerau M et al (2011) Parallel ecological diversification in Antarctic notothenioid fishes as evidence for adaptive radiation. Mol Ecol 20:4707–4721PubMedCrossRefGoogle Scholar
  81. Ryman N, Palm S (2006) POWSIM: a computer program for assessing statistical power when testing for genetic differentiation. Mol Ecol Notes 6:600–602CrossRefGoogle Scholar
  82. Salzburger W (2009) The interaction of sexually and naturally selected traits in the adaptive radiations of cichlid fishes. Mol Ecol 18:169–185PubMedCrossRefGoogle Scholar
  83. Salzburger W, Ewing GB, von Haeseler A (2011) The performance of phylogenetic algorithms in estimating haplotype genealogies. Mol Ecol 20:1952–1963PubMedCrossRefGoogle Scholar
  84. Schneppenheim R, Kock KH, Duhamel G, Janssen G (1994) On the taxonomy of the Lepidonotothen squamifrons group (Pisces, Perciformes, Notothenioidei). Arch Fish Mar Res 42:137–148Google Scholar
  85. Seehausen O (2006) African cichlid fish: a model system in adaptive radiation research. Proc R Soc B 273:1987–1998PubMedCrossRefGoogle Scholar
  86. Selkoe K, Toonen R (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629PubMedCrossRefGoogle Scholar
  87. Shaw P, Arkhipkin A, Al-Khairulla H (2004) Genetic structuring of Patagonian toothfish populations in the Southwest Atlantic Ocean: the effect of the Antarctic Polar Front and deep-water troughs as barriers to genetic exchange. Mol Ecol 13:3293–3303PubMedCrossRefGoogle Scholar
  88. Shust KV (1987) Distribution and important biological aspects of abundant Antarctic notothenioid species. In: Skarlato OA, Alekseev AP, Liubimova TG (eds) Biological resources of the Arctic and Antarctic. Nauka, Moscow, pp 296–320Google Scholar
  89. Siegel V (1980a) Quantitative investigations on parasites of Antarctic channichtyid and nototheniid fishes. Meeresforsch 28:146–156Google Scholar
  90. Siegel V (1980b) Parasite tags for some Antarctic channichthyid fish. Arch Fisch Wiss 31:97–103Google Scholar
  91. Ślósarczyk W (1987) Contribution to the early life history of Channichthyidae from the Bransfield Strait and South Georgia (Antarctica). In: Kullander SO, Fernholm B (eds) Proceedings, fifth congress of European ichthyologists, Stockholm 1985. Swedish Museum of Natural History, Stockholm, pp 427–433Google Scholar
  92. Smith PJ, Gaffney PM (2005) Low genetic diversity in the Antarctic toothfish (Dissostichus mawsoni) observed with mitochondrial and intron DNA markers. Ccamlr Science 12:43–51Google Scholar
  93. Smith P, McVeagh M (2000) Allozyme and microsatellite DNA markers of toothfish population structure in the Southern Ocean. J Fish Biol 57:72–83CrossRefGoogle Scholar
  94. Susana E, Papetti C, Barbisan F et al (2007) Isolation and characterization of eight microsatellite loci in the icefish Chaenocephalus aceratus (Perciformes, Notothenioidei, Channichthyidae). Mol Ecol Notes 7:791–793CrossRefGoogle Scholar
  95. Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (*and other methods). ed. 4.04a. Sinauer Associates, Sunderland, MassachusettsGoogle Scholar
  96. Taylor M, Hellberg ME (2003) Genetic evidence for local retention of pelagic larvae in a Caribbean reef fish. Science 299:107–109PubMedCrossRefGoogle Scholar
  97. Tiedtke JE, Kock K (1989) Structure and composition of the demersal fish fauna around Elephant Island. Arch Fisch Wiss 39(Beih 1):143–169Google Scholar
  98. Van Houdt JKJ, Hellemans B, Van De Putte AP et al (2006) Isolation and multiplex analysis of six polymorphic microsatellites in the Antarctic notothenioid fish, Trematomus newnesi. Mol Ecol Notes 6:157–159CrossRefGoogle Scholar
  99. Van Oosterhout C, Hutchinson W, Wills D, Shipley P (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  100. White M (1998) Development, dispersal and recruitment: a paradox for survival among Antarctic fish. In: Di Prisco G, Pisano E, Clarke A (eds) Fishes of Antarctica. A biological overview. Springer, Milan, pp 53–62Google Scholar
  101. Whitworth T, Nowlin WD, Orsi A et al (1994) Weddell Sea shelf water in the Bransfield Strait and Weddell-Scotia confluence. Deep-Sea Res I 41:629–641CrossRefGoogle Scholar
  102. Zane L, Marcato S, Bargelloni L et al (2006) Demographic history and population structure of the Antarctic silverfish Pleuragramma antarcticum. Mol Ecol 15:4499–4511PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Malte Damerau
    • 1
  • Michael Matschiner
    • 2
  • Walter Salzburger
    • 2
  • Reinhold Hanel
    • 1
  1. 1.Institute of Fisheries Ecology, Johann Heinrich von Thünen-InstituteFederal Research Institute for Rural Areas, Forestry and FisheriesHamburgGermany
  2. 2.Zoological InstituteUniversity of BaselBaselSwitzerland

Personalised recommendations