Skip to main content

Advertisement

Log in

Elemental composition, total lipid content, and lipid class proportions in zooplankton from the benthic boundary layer of the Beaufort Sea shelf (Canadian Arctic)

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Biochemical analyses such as lipid class and elemental composition can inform us about a species’ role in community energetics and nutrient cycling. The accumulation of lipid-rich energy stores affects the elemental composition and stoichiometry of animal tissues, and this relationship is especially relevant to zooplankton at higher latitudes due to increased seasonal lipid storage. However, due to sampling difficulties, the elemental composition and energy storage capabilities of polar, benthic boundary layer zooplankton are poorly known. We determined elemental and lipid class compositions for 26 taxa of benthic boundary layer zooplankton from the Beaufort Sea shelf. Elemental composition as a percentage of dry weight ranged 21–56% for carbon (C), 4–11% for nitrogen (N), and 0.1–1.1% for phosphorus (P) across all taxa. C concentration and C:N were positively correlated with the storage lipids triacylglycerols (TG) and wax esters/steryl esters (WE/SE) and negatively correlated with membrane lipids (phospholipids and sterols). Most taxa had high levels of storage lipids, generally TG. High levels of WE/SE were found in the copepod Calanus hyperboreus (>90% of total lipid) and the chaetognath Eukrohnia hamata (72%). In contrast, the chaetognath Parasagitta elegans had only minor proportions of both TG and WE/SE. The high levels of storage lipids in most taxa indicate that feeding behavior of benthic boundary layer zooplankton on the Beaufort Sea shelf is tightly linked with seasonal pulses of epipelagic production. This is the first report on the biochemical composition of most of the amphipod and mysid taxa presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Båmstedt U (1978) Studies on the deep-sea pelagic community of Korsfjorden, Western Norway—Seasonal variation in weight and biochemical composition of Chiridus armatus (Copepoda), Borermysis arctica (Mysidacea) and Eukrohnia hamata (Chaetognatha) in relation to their biology. Sarsia 63:145–153

    Google Scholar 

  • Brandt A (1997) Biodiversity of peracarid crustaceans (Malacostraca) from the shelf down to the deep Arctic Ocean. Biodivers Conserv 6:1533–1556

    Article  Google Scholar 

  • Brandt A (2001) Great differences in peracarid crustacean density between the Arctic and Antarctic deep sea. Polar Biol 24:785–789

    Article  Google Scholar 

  • Brandt A, Berge J (2007) Peracarid composition, diversity and species richness in the area of the Northeast Water Polynya, East Greenland (Crustacea, Malacostraca). Polar Biol 31:15–22

    Article  Google Scholar 

  • Brökeland W, Choudhury M, Brandt A (2007) Composition, abundance and distribution of Peracarida from the Southern Ocean deep sea. Deep Sea Res II 54:1752–1759

    Article  Google Scholar 

  • Bühring SI, Christiansen B (2001) Lipids in selected abyssal benthopelagic animals: links to the epipelagic zone? Prog Oceanogr 50:369–382

    Article  Google Scholar 

  • Carmack EC, Macdonald RW, Jasper S (2004) Phytoplankton productivity on the Canadian shelf of the Beaufort Sea. Mar Ecol Prog Ser 277:37–50

    Article  Google Scholar 

  • Cartes JE, Sorbe JC (1998) Aspects of population structure and feeding ecology of the deep-water mysid Boreomysis arctica, a dominant species in western Mediterranean slope assemblages. J Plankton Res 20:2273–2290

    Article  Google Scholar 

  • Choe N, Deibel D (2000) Seasonal vertical distribution and population dynamics of the chaetognath Parasagitta elegans in the water column and hyperbenthic zone of Conception Bay, Newfoundland. Mar Biol 137:847–856

    Article  Google Scholar 

  • Choe N, Deibel D, Thompson RJ, Lee SH, Bushell VK (2003) Seasonal variation in the biochemical composition of the chaetognath Parasagitta elegans from the hyperbenthic zone of Conception Bay, Newfoundland. Mar Ecol Prog Ser 251:191–200

    Article  CAS  Google Scholar 

  • Clarke A (1984) The lipid content and composition of some Antarctic macrozooplankton. Brit Antarct Surv Bull 63:57–70

    CAS  Google Scholar 

  • Connelly TL (2008) Biogeochemistry of benthic boundary layer zooplankton and particulate organic matter on the Beaufort Sea shelf, PhD. dissertation, Memorial University of Newfoundland (Canada). (Publicatoin nbr AAT NR55370)

  • Donnelly J, Torres JJ, Hopkins TL, Lancraft TM (1994) Chemical composition of Antarctic zooplankton during austral fall and winter. Polar Biol 14:171–183

    Article  Google Scholar 

  • Elser JJ, Urabe J (1999) The stoichiometry of consumer-driven nutrient recycling: theory, observations, and consequences. Ecology 80:735–751

    Article  Google Scholar 

  • Elser JJ, Dobberfuhl DR, MacKay NA, Schampel JH (1996) Organism size, life history, and N:P stoichiometry. Bioscience 46:674–684

    Article  Google Scholar 

  • Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LJ (2000) Biological stoichiometry from genes to ecosystems. Ecol Lett 3:540–550

    Article  Google Scholar 

  • Falk-Petersen S, Gatten RR, Sargent JR, Hopkins CCE (1981) Ecological investigations on the zooplankton community in Balsfjorden, northern Norway: seasonal changes in the lipid class composition of Meganyctiphanes norvegica (M. Sars), Thysanoessa raschii (M. Sars) and T. inermis (Krøyer). J Exp Mar Biol Ecol 54:209–224

    Article  CAS  Google Scholar 

  • Falk-Petersen S, Sargent JR, Tande KS (1987) Lipid composition of zooplankton in relation to the sub-Arctic food web. Polar Biol 8:115–120

    Article  CAS  Google Scholar 

  • Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  • Gorokhova E, Hansson S (2000) Elemental composition of Mysis mixta (Crustacea, Mysidacea) and energy costs of reproduction and embryogenesis under laboratory conditions. J Exp Mar Biol Ecol 246:103–123

    Article  PubMed  CAS  Google Scholar 

  • Graeve M, Kattner G, Piepenburg D (1997) Lipids in Arctic benthos: does the fatty acid and alcohol composition reflect feeding and trophic interactions? Polar Biol 18:53–61

    Article  Google Scholar 

  • Graeve M, Dauby P, Scailteur Y (2001) Combined lipid, fatty acid and digestive tract content analyses: a penetrating approach to estimate feeding modes in Antarctic amphipods. Polar Biol 24:853–862

    Article  Google Scholar 

  • Graeve M, Albers C, Kattner G (2005) Assimilation and biosynthesis of lipids in Arctic Calanus species based on feeding experiments with a 13C labelled diatom. J Exp Mar Biol Ecol 317:109–125

    Article  CAS  Google Scholar 

  • Hagen W, Auel H (2001) Seasonal adaptations and the role of lipids in oceanic zooplankton. Zoology 104:313–326

    Article  PubMed  CAS  Google Scholar 

  • Hagen W, Van Vleet ES, Kattner G (1996) Seasonal lipid storage as overwintering strategy of Antarctic krill. Mar Ecol Prog Ser 134:85–89

    Article  CAS  Google Scholar 

  • Hessen DO (1990) Carbon, nitrogen and phosphorus status in Daphnia at varying food conditions. J Plankton Res 12:1239–1249

    Article  CAS  Google Scholar 

  • Hirche H-J, Fetzer I, Graeve M, Kattner G (2003) Limnocalanus macrurus in the Kara Sea (Arctic Ocean): an opportunistic copepod as evident from distribution and lipid patterns. Polar Biol 26:720–726

    Article  Google Scholar 

  • Hop H, Falk-Petersen S, Svendsen H, Kwasniewski S, Pavlov V, Pavlova O, Søreide JE (2006) Physical and biological characteristics of the pelagic system across Fram Strait to Kongsfjorden. Prog Oceanogr 71:182–231

    Article  Google Scholar 

  • Ikeda T, Mitchell AW (1982) Oxygen uptake, ammonia excretion and phosphate excretion by krill and other Antarctic zooplankton in relation to their body size and chemical composition. Mar Biol 71:283–298

    Article  Google Scholar 

  • Ikeda T, Skjoldal HR (1989) Metabolism and elemental composition of zooplankton from the Barents Sea during early Arctic summer. Mar Biol 100:173–183

    Article  CAS  Google Scholar 

  • Jeffs AG, Nichols PD, Bruce MP (2001) Lipid reserves used by pueruli of the spiny lobster Jasus edwardsii in crossing the continental shelf of New Zealand. Comp Biochem Phys A 129:305–311

    Article  CAS  Google Scholar 

  • Kattner G, Hagen W, Lee RF, Campbell R, Deibel D, Falk-Petersen S, Graeve M, Hansen BW, Hirche HJ, Jónasdóttir SH, Madsen ML, Mayzaud P, Müller-Navarra D, Nichols PD, Paffenhöfer G-A, Pond D, Saito H, Stübing D, Virtue P (2007) Perspectives on marine zooplankton lipids. Can J Fish Aquat Sci 64:1628–1639

    Article  CAS  Google Scholar 

  • Lee RF (1975) Lipids of Arctic zooplankton. Comp Biochem Physiol B 51:263–266

    Article  PubMed  CAS  Google Scholar 

  • Lee RF, Hirota J (1973) Wax esters in tropical zooplankton and nekton and the geographical distribution of wax esters in marine copepods. Limnol Oceanogr 18:227–239

    Article  CAS  Google Scholar 

  • Lee RF, Hirota J, Barnett AM (1971) Distribution and importance of wax esters in marine copepods and other zooplankton. Deep-Sea Res 18:1147–1165

    CAS  Google Scholar 

  • Lee RF, Hagen W, Kattner G (2006) Lipid storage in marine zooplankton. Mar Ecol Prog Ser 307:273–306

    Article  CAS  Google Scholar 

  • Lehtiniemi M, Viitasalo M, Kuosa H (2002) Diet composition influences the growth of the pelagic mysid shrimp, Mysis mixta (Mysidacea). Boreal Environ Res 7:121–128

    CAS  Google Scholar 

  • Linse K, Brandt A, Hilbig B, Wegener G (2002) Composition and distribution of suprabenthic fauna in the southeastern Weddell Sea and off King George Island. Antarct Sci 14:3–10

    Article  Google Scholar 

  • Macdonald RW, Solomon SM, Cranston RE, Welch HE, Yunker MB, Gobeil C (1998) A sediment and organic carbon budget for the Canadian Beaufort Shelf. Mar Geol 144:255–273

    Article  CAS  Google Scholar 

  • Parrish CC (1987) Separation of aquatic lipid classes by Chromarod thin-layer chromatography with measurement by Iatroscan flame ionization detection. Can J Fish Aquat Sci 44:722–731

    Article  CAS  Google Scholar 

  • Parrish CC (1999) Determination of total lipid, lipid classes, and fatty acids in aquatic samples. In: Arts MT, Wainman BC (eds) Lipids in freshwater ecosystems. Springer, New York, pp 4–20

    Chapter  Google Scholar 

  • Parrish CC, Deibel D, Thompson RJ (2009) Effect of sinking spring phytoplankton blooms on lipid content and composition in suprabenthic and benthic invertebrates in a cold ocean coastal environment. Mar Ecol Prog Ser 391:33–51

    Article  CAS  Google Scholar 

  • Percy JA, Fife FJ (1981) The biochemical composition and energy content of Arctic marine macrozooplankton. Arctic 34:307–313

    Google Scholar 

  • Richoux NB, Deibel D, Thompson RJ, Parrish CC (2004a) Seasonal changes in the lipids of Mysis mixta (Mysidacea) from the hyperbenthos of a cold-ocean environment (Conception Bay, Newfoundland). Can J Fish Aquat Sci 61:1940–1953

    Article  Google Scholar 

  • Richoux NB, Thompson RJ, Deibel D, Parrish CC (2004b) Seasonal and developmental variation in the lipids of Acanthostepheia malmgreni (Amphipoda) from the hyperbenthos of a cold-ocean environment (Conception Bay, Newfoundland). J Mar Biol Assoc UK 84:1189–1197

    Article  Google Scholar 

  • Sargent JR, Lee RF (1975) Biosynthesis of lipids in zooplankton from Saanich Inlet, British Columbia, Canada. Mar Biol 31:15–23

    Article  CAS  Google Scholar 

  • Scott CL, Kwasniewski S, Falk-Petersen S, Sargent JR (2002) Lipids and fatty acids in the copepod Jaschnovia brevis (Jaschnov) and in particulates from Arctic waters. Polar Biol 25:65–71

    Article  Google Scholar 

  • Solórzano L, Sharp JH (1980) Determination of total dissolved and particulate phosphorus in natural waters. Limnol Oceanogr 25:754–757

    Article  Google Scholar 

  • Sterner RW (1990) The ratio of nitrogen to phosphorus resupplied by herbivores: zooplankton and the algal competitive arena. Am Nat 136:209–229

    Article  Google Scholar 

  • Stevens CJ, Deibel D, Parrish CC (2004) Species-specific differences in lipid composition and omnivory indices in Arctic copepods collected in deep water during autumn (North Water Polynya). Mar Biol 144:905–915

    Article  CAS  Google Scholar 

  • Thompson RJ (1977) Blood chemistry, biochemical composition, and the annual reproductive cycle in the giant scallop, Placopecten magellanicus, from southeast Newfoundland. J Fish Res Board Can 34:2104–2116

    Article  CAS  Google Scholar 

  • Tremblay J-E, Smith WO Jr (2007) Primary production and nutrient dynamics in polynyas. In: Smith WO Jr, Barber DG (eds) Polynyas: windows to the world. Elsevier, Amsterdam, pp 239–269

    Chapter  Google Scholar 

  • Ventura M (2006) Linking biochemical and elemental composition in freshwater and marine crustacean zooplankton. Mar Ecol Prog Ser 327:233–246

    Article  CAS  Google Scholar 

  • Ventura M, Catalan J (2005) Reproduction as one of the main causes of temporal variability in the elemental composition of zooplankton. Limnol Oceanogr 50:2043–2056

    Article  CAS  Google Scholar 

  • Vrede T, Dobberfuhl DR, Kooijman SALM, Elser JJ (2004) Fundamental connections among organisms C:N:P stoichiometry, macromolecular composition, and growth. Ecology 85:1217–1229

    Article  Google Scholar 

  • Walve J, Larsson U (1999) Carbon, nitrogen and phosphorus stoichiometry of crustacean zooplankton in the Baltic Sea: implications for nutrient recycling. J Plankton Res 21:2309–2321

    Article  Google Scholar 

Download references

Acknowledgments

We thank the officers and crew of the CCGS Amundsen and scientists of CASES for their help in the field. We acknowledge Jeanette Wells, Gary Maillet, and Christine Vickers for assistance in the laboratory, Don Steele and Sing-Hoi Lee for help with taxonomic identification, and Piotr Trela, Lisa Loseto, David Rees, and Paul Renaud for assistance in collecting the samples. Additionally, this manuscript benefited from valuable input by Dieter Piepenburg and two anonymous reviewers. This work was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Network Grant to L. Fortier, by the NSERC Discovery Grant of D. Deibel, and by a Sigma Xi Student Grant-in-Aide and School of Graduate Studies Fellowship (Memorial University) to T. Connelly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tara L. Connelly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Connelly, T.L., Deibel, D. & Parrish, C.C. Elemental composition, total lipid content, and lipid class proportions in zooplankton from the benthic boundary layer of the Beaufort Sea shelf (Canadian Arctic). Polar Biol 35, 941–957 (2012). https://doi.org/10.1007/s00300-011-1142-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-011-1142-7

Keywords

Navigation