Skip to main content

On the potential of fatty acids as trophic markers in Arctic grazers: feeding experiments with sea urchins and amphipods fed nine diets of macroalgae

Abstract

To elucidate dietary preferences of benthic grazers at the Arctic Kongsfjorden by means of fatty acid trophic markers, ten different parallel treatments (starvation, 3 species of red macroalgae, 4 species of brown macroalgae and 2 species of green macroalgae) were offered as mono-algal diet to specimens of the dominant sea urchin Strongylocentrotus droebachiensis (Echinodermata, Echinoidea) and the gammarid amphipod Gammarellus homari (Crustacea, Amphipoda). At the end of the 3-week feeding experiments, amphipods and sea urchins (soft tissue) were deep-frozen and analysed for total lipid contents as well as fatty acid (FA) compositions. In addition, FA profiles of the algal species were determined and screened for specific FA patterns or single FAs qualifying as potential trophic markers in the grazers. Despite their diets of nine algal species with different FA compositions, FA patterns of the sea urchins and amphipods revealed a pronounced similarity between treatments. This strong similarity was also observed in the faecal pellets of the sea urchins. Hence, deviating FA compositions of the macroalgae were neither reflected in the FA patterns of the grazers’ tissue nor in their faecal pellets. Suitable algal FA trophic markers could thus not be identified in the two grazers from Kongsfjorden. The rather low lipid levels, especially in the amphipods, as well as a pronounced degradation and modification of FAs may explain that the FA trophic marker approach did not provide evidence of dietary preferences. Future experiments may obtain a higher resolution of potential FA trophic markers by analysing separate lipid classes or single tissues of lipid-poor grazers. Alternatively, different methods are needed to reveal high-resolution trophic relationships between macroalgae and herbivores in Kongsfjorden.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Best NJ, Bradshaw CJA, Hindell MA, Nichols PD (2003) Vertical stratification of fatty acids in the blubber of southern elephant seals (Mirounga leonina): implications for diet analysis. Comp Biochem Physiol 134:253–263

    Article  Google Scholar 

  2. Budge SM, Iverson SJ, Koopman HN (2006) Studying trophic ecology in marine ecosystems using fatty acids: a primer on analysis and interpretation. Mar Mamm Sci 22:759–801

    Article  Google Scholar 

  3. Budge SM, Springer AM, Iverson SJ, Sheffield G (2007) Fatty acid biomarkers reveal niche separation in an Arctic benthic food web. Mar Ecol Prog Ser 336:305–309

    Article  CAS  Google Scholar 

  4. Carey AG Jr (1972) Food sources of sublittoral bathyal and abyssal asteroids in the northeast Pacific Ocean. Ophelia 10:35–47

    Google Scholar 

  5. Cavalier-Smith T (1995) Membrane heredity, symbiogenesis, and the multiple origins of algae. In: Arai R et al (eds) Biodiversity and evolution. The National Science Museum Foundation, Tokyo, pp 75–114

    Google Scholar 

  6. Cavalier-Smith T (2000) Membrane heredity and early chloroplast evolution. Trends Plant Sci 5:174–182

    PubMed  Article  CAS  Google Scholar 

  7. Clarke KR, Gorley RN (2001) PRIMER v5: users manual/tutorial. PRIMER-E Ltd, Plymouth

    Google Scholar 

  8. Clarke KR, Warwick RM (2001) Changes in marine communities: an approach to statistical analysis and interpretation, 2nd edn. PRIMER-E, Plymouth

    Google Scholar 

  9. Cook EJ, Bell MV, Black KD, Kelly MS (2000) Fatty acid compositions of gonadal material and diets of the sea urchin, Psammechinus miliaris: trophic and nutritional implications. J Exp Mar Biol Ecol 255:261–274

    PubMed  Article  CAS  Google Scholar 

  10. Cossins AR (1994) Homeoviscous adaptation of biological membranes and its functional significance. In: Cossins AR (ed) Temperature adaptation of biological membranes. Portland Press, London, pp 63–76

    Google Scholar 

  11. Crawley KR, Hyndes GA, Vanderklift MA, Revill AT, Nichols PD (2009) Allochthonous brown algae are the primary food source for consumers in a temperate, coastal environment. Mar Ecol Prog Ser 376:33–44

    Article  Google Scholar 

  12. Dahl TM, Lydersen C, Kovacs KM, Falk-Petersen S, Sargent JR, Gjertz I, Gulliksen B (2000) Fatty acid composition of the blubber in white whales (Delphinapterus leucas). Polar Biol 23:401–409

    Article  Google Scholar 

  13. Dalsgaard J, St John M, Kattner G, Müller-Navarra D, Hagen W (2003) Fatty acid trophic markers in the pelagic marine environment. Adv Mar Biol 46:225–340

    PubMed  Article  Google Scholar 

  14. De Angelis L, Rise P, Giavarini F, Galli C, Bolis CL, Colombo ML (2005) Marine macroalgae analyzed by mass spectrometry are rich sources of polyunsaturated fatty acids. J Mass Spectrom 40:1605–1608

    PubMed  Article  Google Scholar 

  15. Delwiche CF, Palmer JD (1997) The origin of plastids and their spread via secondary symbiosis. Plant Syst Evol 11:53–86

    CAS  Google Scholar 

  16. DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341–351

    Article  CAS  Google Scholar 

  17. Falk-Petersen S, Hopkins CCE, Sargent JR (1990) Trophic relationships in the pelagic, Arctic food web. In: Barnes M, Gibson RN (eds) Trophic relationships in the marine environment: Proceedings of the 24th European Marine Biology Symposium. European Marine Biology Symposia 24, pp 315–333

  18. Fukuda Y, Naganuma T (2001) Potential dietary effects on the fatty acid composition of the common jellyfish Aurelia aurita. Mar Biol 138:1029–1035

    Article  CAS  Google Scholar 

  19. Gonzalez-Duran E, Castell JD, Robinson SMC, Blair TJ (2008) Effects of dietary lipids on the fatty acid composition and lipid metabolism of the green sea urchin Strongylocentrotus droebachiensis. Aquaculture 276:120–129

    Article  CAS  Google Scholar 

  20. Graeve M, Kattner G, Hagen W (1994a) Diet-induced changes in the fatty acid composition of Arctic herbivorous copepods: experimental evidence of trophic markers. J Exp Mar Biol Ecol 182:97–110

    Article  CAS  Google Scholar 

  21. Graeve M, Hagen W, Kattner G (1994b) Herbivorous or omnivorous? On the significance of lipid compositions as trophic markers in Antarctic copepods. Deep-Sea Res 41:915–924

    Article  Google Scholar 

  22. Graeve M, Kattner G, Piepenburg D (1997) Lipids in Arctic benthos: does the fatty acid and alcohol composition reflect feeding and trophic interactions? Polar Biol 18:53–61

    Article  Google Scholar 

  23. Graeve M, Kattner G, Wiencke C, Karsten U (2002) Fatty acid composition of Arctic and Antarctic macroalgae: indicators for phylogenetic and trophic relationships. Mar Ecol Prog Ser 231:67–74

    Article  CAS  Google Scholar 

  24. Hagen W (2000) Lipids. In: Harris R, Wiebe P, Lenz J, Skjoldal HR, Huntley M (eds) ICES zooplankton methodology manual. Academic Press, San Diego, pp 113–119

    Google Scholar 

  25. Herbreteau F, Coiffard LJM, Derrien A, De Roeck-Holtzhauer Y (1997) The fatty acid composition of five species of macroalgae. Bot Mar 40:25–27

    Article  CAS  Google Scholar 

  26. Hooker SK, Iverson SJ, Ostrom P, Smith SC (2001) Diet of northern bottlenose whales inferred from fatty-acid and stable-isotope analyses of biopsy samples. Can J Zool 79:1442–1454

    Article  Google Scholar 

  27. Hop H, Pearson T, Hegseth EN, Kovacs KM, Wiencke C, Kwasniewski S, Eiane K, Mehlum F, Gulliksen B, Wlodarska-Kowalczuk M, Lydersen C, Weslawski JM, Cochrane S, Gabrielsen GW, Leakey RJG, Lønne OJ, Zajaczkowski M, Falk-Petersen S, Kendall M, Wängberg S-Å, Bischof K, Voronkov AY, Kovaltchouk NA, Wiktor J, Poltermann M, di Prisco G, Papucci C, Gerland S (2002) The marine ecosystem of Kongsfjorden, Svalbard. Polar Res 21:167–208

    Article  Google Scholar 

  28. Howell KL, Pond DW, Billett DSM, Tyler PA (2003) Feeding ecology of deep-sea seastars (Echinodermata: Asteroidea): a fatty-acid biomarker approach. Mar Ecol Prog Ser 255:193–206

    Article  CAS  Google Scholar 

  29. Hudson IR, Pond DW, Billett DSM, Tyler PA, Lampitt RS, Wolff GA (2004) Temporal variations in fatty acid composition of deep-sea holothurians: Evidence of bentho-pelagic coupling. Mar Ecol Prog Ser 281:109–120

    Article  CAS  Google Scholar 

  30. Hughes AD, Kelly MS, Barnes DKA, Catarino AI, Black KD (2006) The dual functions of sea urchin gonads are reflected in the temporal variations of their biochemistry. Mar Biol 148:789–798

    Article  Google Scholar 

  31. Iverson SJ (2008) Tracing aquatic food webs using fatty acids: from qualitative indicators to quantitative determination. In: Arts MT, Brett MT, Kainz M (eds) Lipids in aquatic ecosystems. Springer, New York

    Google Scholar 

  32. Iverson SJ, Frost KJ, Lowry LF (1997) Fatty acid signatures reveal fine scale structure of foraging distribution of harbor seals and their prey in Prince William Sound, Alaska. Mar Ecol Prog Ser 151:255–271

    Article  CAS  Google Scholar 

  33. Jangoux M (1982) Food and feeding mechanisms: Asteroidea. In: Jangoux M, Lawrence JM (eds) Echinoderm nutrition. Balkema Publ, Rotterdam, pp 117–159

  34. Kattner G, Fricke HSG (1986) Simple gas–liquid chromatographic method for the simultaneous determination of fatty acids and alcohols in wax esters of marine organisms. J Chromatogr 361:263–268

    Article  CAS  Google Scholar 

  35. Kelly J, Scheibling R, Iverson S, Gagnon P (2008) Fatty acid profiles in the gonads of the sea urchin Strongylocentrotus droebachiensis on natural algal diets. Mar Ecol Prog Ser 373:1–9

    Article  CAS  Google Scholar 

  36. Khotimchenko SV (1998) Fatty acids of brown algae from the Russian Far East. Phytochemistry 49:2363–2369

    Article  CAS  Google Scholar 

  37. Khotimchenko SV, Vaskovsky VE, Titlyanova TV (2002) Fatty acids of marine algae from the Pacific coast of north California. Bot Mar 45:17–22

    Article  CAS  Google Scholar 

  38. Lee RF, Nevenzel JC, Paffenhoffer GA (1971) Importance of wax esters and other lipids in the marine food chain: phytoplankton and copepods. Mar Biol 9:99–108

    Article  CAS  Google Scholar 

  39. Lee RF, Hagen W, Kattner G (2006) Lipid storage in marine zooplankton. Mar Ecol Prog Ser 307:273–306

    Article  CAS  Google Scholar 

  40. Li X, Fan X, Han L, Lou Q (2002) Fatty acids of some algae from the Bohai Sea. Phytochemistry 59:157–161

    PubMed  Article  CAS  Google Scholar 

  41. Liyana-Pathirana C, Shahidi F, Whittick A, Jooper R (2002a) Lipid and lipid soluble components of green sea urchin Strongylocentrotus droebachiensis. J Food Lipids 9:105–126

    Article  CAS  Google Scholar 

  42. Liyana-Pathirana C, Shahidi F, Whittick A (2002b) The effect of an artificial diet on the biochemical composition of the gonads of the sea urchin (Strongylocentrotus droebachiensis). Food Chem 79:461–472

    Article  CAS  Google Scholar 

  43. Minagawa M, Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between 15N and animal age. Geochim Cosmochim Acta 48:1135–1140

    Article  CAS  Google Scholar 

  44. Molis M, Wessels H, Hagen W, Karsten U, Wiencke C (2009) Do sulphuric acid and the brown alga Desmarestia viridis support community structure in Arctic kelp patches by altering grazing impact, distribution patterns, and behaviour of sea urchins? Polar Biol 32:71–82

    Article  Google Scholar 

  45. Peters J, Dutz J, Hagen W (2007) Role of essential fatty acids on the reproductive success of the copepod Temora longicornis in the North Sea. Mar Ecol Prog Ser 341:153–163

    Article  CAS  Google Scholar 

  46. Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293–320

    Article  Google Scholar 

  47. Pinnegar JK, Polunin VC (2000) Contributions of stable-isotope data to elucidating food webs of Mediterranean rocky littoral fishes. Oecologia 122:399–409

    Article  Google Scholar 

  48. Pinnegar JK, Polunin VC, Francour P, Badalamenti F, Chemello R, Harmelin-Vivien ML, Hereu B, Milazzo M, Zabala M, D’Anna G, Pipitone C (2000) Trophic cascades in benthic marine ecosystems: lessons for fisheries and protected area management. Environ Conserv 27:179–200

    Article  Google Scholar 

  49. Post DM (2002) Using stable isotope methods to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718

    Article  Google Scholar 

  50. Sanina NM, Goncharova SN, Kostetsk EY (2004) Fatty acid composition of individual polar lipid classes from marine macrophytes. Phytochemistry 65:721–730

    PubMed  Article  CAS  Google Scholar 

  51. Sargent JR, Eilertsen HC, Falk-Petersen S, Taasen JP (1985) Carbon assimilation and lipid production in phytoplankton in northern Norwegian fjords. Mar Biol 85:109–116

    Article  CAS  Google Scholar 

  52. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611

    Google Scholar 

  53. Takagi T, Eaton CA, Ackman RG (1980) Distribution of fatty acids in lipids of the common Atlantic sea urchin Strongylocentrotus droebachiensis. Can J Fish Aquat Sci 37:195–202

    Article  CAS  Google Scholar 

  54. Turner JP, Rooker JR (2006) Fatty acid composition of flora and fauna associated with Sargassum mats in the Gulf of Mexico. J Mar Biol 149:1025–1036

    Article  CAS  Google Scholar 

  55. Tyler PA, Gage JD, Paterson GJL, Rice AL (1993) Dietary constraints on reproductive periodicity in two sympatric deep-sea astropectinid seastars. Mar Biol 115:267–277

    Article  Google Scholar 

  56. Vander Zanden MJ, Rasmussen JB (1999) Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecology 80:1395–1404

    Article  Google Scholar 

  57. Vander Zanden MJ, Rasmussen JB (2001) Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. Limnol Oceanogr 46:2061–2066

    Article  CAS  Google Scholar 

  58. Wessels H, Hagen W, Molis M, Wiencke C, Karsten U (2006) Intra- and interspecific differences in palatability of Arctic macroalgae from Kongsfjorden (Spitsbergen) for two benthic sympatric invertebrates. J Exp Mar Biol Ecol 329:20–33

    Article  Google Scholar 

  59. Zar JH (1996) Biostatistical analysis, 3rd edn. Prentice Hall International, Englewood Cliffs

    Google Scholar 

Download references

Acknowledgments

This work was performed at the Ny Ålesund International Research and Monitoring Facility on Spitsbergen (Svalbard). The authors are also grateful to the Alfred Wegener Institute for Polar and Marine Research Center for Scientific Diving, especially to Max Schwanitz, Dr. Jürgen Laudien, Dr. Tilman Alpermann, Claudia Daniel, Saskia Brandt, Dr. Ricardo Sahade and Dr. Marcos Tatian for providing samples by SCUBA-diving, as well as to the staff at Koldewey Station. The experiments comply with the current laws of Germany and Norway. In addition, all authors thank the Deutsche Forschungsgemeinschaft (DFG) for funding this project. The authors thank Dr. Katharina Fabricius, Australian Institute of Marine Science, Townsville, and 2 anonymous reviewers for their constructive comments to improve the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wilhelm Hagen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wessels, H., Karsten, U., Wiencke, C. et al. On the potential of fatty acids as trophic markers in Arctic grazers: feeding experiments with sea urchins and amphipods fed nine diets of macroalgae. Polar Biol 35, 555–565 (2012). https://doi.org/10.1007/s00300-011-1101-3

Download citation

Keywords

  • Trophic marker
  • Fatty acids
  • Arctic
  • Macroalgae
  • Grazer
  • Plant animal interactions
  • Kongsfjorden