Abstract
Global warming is a reality and its effects have been widely studied. However, the consequences for marine invertebrates remain poorly understood. Thus, the present study proposed to evaluate the effect of elevated temperature on the innate immune system of Antarctic sea urchin Sterechinus neumayeri. Sea urchins were collected nearby Brazilian Antarctic Station “Comandante Ferraz” and exposed to 0 (control), 2 and 4°C for periods of 48 h, 2, 7 and 14 days. After the experimental periods, coelomic fluid was collected in order to perform the following analyses: coelomocytes differential counting, phagocytic response, adhesion and spreading coelomocytes assay, intranuclear iron crystalloid and ultra structural analysis of coelomocytes. The red sphere cell was considered a biomarker for heat stress, as they increased in acute stress. Besides that, a significant increase in phagocytic indexes was observed at 2°C coinciding with a significant increase of intranuclear iron crystalloid at the same temperature and same time period. Furthermore, significant alterations in cell adhesion and spreading were observed in elevated temperatures. The ultra structural analysis of coelomocytes showed no significant difference across treatments. This was the first time that innate immune response alterations were observed in response to elevated temperature in a Polar echinoid.



Similar content being viewed by others
References
Bachmann S, Pohla H, Goldschmid A (1980) Phagocytes in the axial complex of the sea urchin Sphaerechinus granularis (Lam.)—fine structure and X-ray microanalysis. Cell Tissue Res 31:109–120. doi:10.1007/BF00236924
Beane WS, Voronina E, Wessel GM, McClay DR (2006) Lineage-specific expansions provide genomic complexity among sea urchin GTPases. Dev Biol 300:165–179. doi:10.1016/j.ydbio.2006.08.046
Beck G, Ellis T, Zhang HY, Lin WY, Beauregard K, Habicht GS, Truong N (2001) Nitric oxide production by coelomocytes of Asterias forbesi. Dev Comp Immunol 25:1–10. doi:10.1016/S0145-305X(00)00036-7
Bernstein L, Bosch P, Canziani O, Chen Z, Christ R, Davidson O, Hare W, Huq S, Karoly D, Kattsov V, Kundzewicz Z, Liu J, Lohmann U, Manning M, Matsuno T, Menne B, Metz M, Mirza M, Nicholls N, Nurse L, Pachauri R, Palutikof J, Parry M, Qin D, Ravindranath N, Reisinger A, Ren J, Riahi K, Rosenzweig C, Rusticucci M, Schneider S, Sokona Y, Solomon S, Stott P, Stouffer R, Sugiyama T, Swart R, Tirpak D, Vogel C, Yohe G (2007) Climate change 2007: synthesis report
Bertheussen K, Seljelid R (1978) Echinoid phagocytes in vitro. Exp Cel Res 111:401–412. doi:10.1016/0014-4827(78)90185-4
Bindoff NL, Willebrand J, Artale V, Cazenave A, Gregory J, Gulev S, Hanawa K, Le Quéré C, Levitus S, Nojiri Y, Shum CK, Talley LD, Unnikrishnan A (2007) Observations: oceanic climate change and sea level. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge
Borges JCS, Porto-Neto LR, Mangiaterra MBCD, Jensch-Junior BE, Silva JRMC (2002) Phagocytosis in vivo and in vitro in the Antarctic Sea Urchin Sterechinus neumayeri at 0°C. Polar Biol 25:891–897. doi:10.1007/s00300-002-0431-6
Borges JCS, Branco PC, Pressinotti LN, Severino D, Silva JRMC (2010) Intranuclear crystalloids of Antarctic sea urchins as a biomarker for oil contamination. Polar Biol 33(6):843–849. doi:10.1007/s00300-009-0762-7
Boureux A, Vignal E, Faure S, Fort P (2007) Evolution of the Rho Family of Ras-Like GTPases in Eukaryotes. Mol Biol Evol 24(1):203–216. doi:10.1093/molbev/msl145
Brock TD, Madigan MT, Martinko JM, Parker J (1994) Biology of microorganism, 7th edn. Prentice-Hall Inc, Englewood Cliffs
Calich VLG, Purchio A, Paula CR (1978) A new fluorescent viability test for fungi cells. Mycopathol 66(3):175–177. doi:10.1007/BF00683967
Caron E, Hall A (1998) Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 282:1717–1721. doi:10.1126/science.282.5394.1717
Cuéllar-Mata P, Martínez-Cadena G, López-Godínez J, Obregón A, García-Soto J (2000) The GTP-binding protein RhoA localizes to the cortical granules of Strongylocentrotus purpuratus sea urchin egg in secreted during fertilization. Eur J Cell Biol 79(2):81–91. doi:10.1078/S0171-9335(04)70010-2
D’Andrea-Winslow L, Novitski AK (2008) Active bleb formation in abated Lytechinus variegatus red spherule cells after disruption of acto-myosin contractility. Integr Zool 3(2):115–122. doi:10.1111/j.1749-4877.2008.00086.x
Ebert TA, Dixon JD, Schroeter SC, Kalvass PE, Richmond NT, Bradbury WA, Woodby DA (1999) Growth and mortality of red sea urchins Strongylocentrotus franciscanus across a latitudinal gradient. Mar Ecol Prog Ser 190:189–209. doi:10.2983/0730-8000-27.5.1291
Freshney RI (1987) Culture of animal cells: a manual of basic technique, 2nd edn. New York
Hall A, Nobes CD (2000) Rho GTPases: molecular switches that control the organization and dynamics of the actin cytoskeleton. Philos Trans R Soc Lond B Biol Sci 29:965–970. doi:10.1098/rstb.2000.0632
Harley CDG, Hughes AR, Hutgren KM, Miner BG, Sorte CJB, Thornber CS, Rodriguez LF, Tomanek L, Williams SL (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9(2):228–241. doi:10.1111/j.1461-0248.2005.00871.x
Harvell CD, Kim K, Burkholder JM, Colwell RR, Epsterin PR, Grimes DJ, Hofmann EE, Lipp EK, Osterhaus ADME, Overstreet RM, Porter JW, Smith GW, Vasta GR (1999) Emerging marine diseases—climate links and anthropogenic factors. Science 285:1505–1510. doi:10.1126/science.285.5433.1505
Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS, Samuel MD (2002) Climate warming and disease risk for terrestrial and marine biota. Science 296:2158–2162. doi:10.1126/science.1063699
Hayat MA (1981) Fixation for electron microscopy. Academic Press, New York
Hobaus E (1978) Studies on phagocytes of regular sea urchins (Echinoidea, Echinodermata) I—the occurrence of iron containing bodies within the nuclei of phagocytes. Zoo Anz 200:31–40. doi:10.1007/BF00236924
Isaeva VV, Korenbaum ES (1990) Defence functions of coelomocytes and immunity of echinoderms. Sov J Mar Biol 15:353–363
Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ, Warner RR (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–638. doi:10.1126/science.1059199
Jiravanichpaisal P, Söderhäll K, Söderhäll I (2004) Effect of water temperature on the immune response and infectivity pattern of white spot syndrome virus (WSSV) in freshwater crayfish. Fish Shell Immunol 17:265–275. doi:10.1016/j.fsi.2004.03.010
Johnson PT (1969) The coelomic elements of sea urchins (Strongylocentrotus). I. The normal coelomocytes, their morphology and dynamics in hanging drop. J Invertebr Pathol 13:25–41. doi:10.1016/0022-2011(69)90236-5
Johnson PT (1971) Studies on disease urchins from Point Loma. In: Kelp habitat improvement project annual report, 1970–71. Calif. Inst. Technol., Pasadena
Jones GM, Hebda AJ, Scheibling RE, Miller RJ (1985) Histopathology of the disease causing mass mortality of sea urchins (Strongylocentrotus droebachiensis) in Nova Scotia. J Inv Pathol 45:260–271. doi:10.1016/0022-2011(85)90102-8
Karasaki S (1965) Intranuclear crystal within the phagocytes of the ovary of Arbacia punctulata. J Cell Biol 25(1):654–660. doi:10.1083/jcb.25.3.654
Kawakami T, Tsushima M, Katabami Y, Mine M, Ishida A, Matsuno T (1998) Effect of beta, beta-carotene, beta-echinone, astaxanthin, fucosanthin, vitamin A and vitamin E on the biological defense of the sea urchin Pdseudocentrotus depressus. J Exp Mar Biol Ecol 226(2):165–174. doi:10.1056/NEJM199404143301501
Kurihara K, Shirayama Y (2004) Effects of increased atmospheric CO2 on sea urchin early development. Mar Ecol Prog Ser 274:161–169. doi:10.3354/meps274161
Lafferty KD, Porter JD, Ford SE (2004) Are diseases increasing in the ocean? Ann Rev Ecol Evol Syst 35:31–54. doi:10.1146/annurev.ecolsys.35.021103.105704
Lambrechts A, Van Troys M, Ampe C (2004) The actin cytoskeleton in normal and pathological cell motility. Int J Biochem Cell Biol 36:1890–1909. doi:10.1016/j.biocel.2004.01.024
Lebedev AV, Levitskaya EL, Tikhonova EV, Ivanova EV (2001) Antioxidant properties, autooxidation, and mutagenic activity of echinochrome a compared with its etherified derivative. Biochem (Mosc) 66(8):885–893. doi:10.1023/A:1011904819563
Maes P, Jangoux M (1984) The bald-sea-urchin disease: a biopathological approach. Helgol Mar Res 37:217–224. doi:10.1007/BF01989306
Mangiaterra MBBCD, Silva JRMC (2001) Induced inflammatory process in the sea urchin (Lytechinus variegatus). J Inv Biol 120(2):178–184. doi:10.1111/j.1744-7410.2001.tb00122.x
Matranga V, Toia G, Bonaventura R, Muller WEG (2000) Cellular and biochemical responses to environmental and experimentally induced stress in sea urchin coelomocytes. Cell Stress Chaperon 5(2):113–120. doi:csac.2000.158
Matranga V, Pinsino A, Celi M, Natoli A, Bonaventura R, Schröder HC, Müller WEG (2005) Monitoring chemical and physical stress using immune cells. In: Matranga V (ed) Echinodermata. Springer, Berlin, pp 85–110
Matranga V, Pinsino A, Celi M, Di Bella G, Natoli A (2006) Impacts of UV-B radiation on short term cultures of sea urchin coelomocytes. Mar Biol 149:25–34. doi:10.1007/s00227-005-0212-1
McCallum H, Harvell D, Dobson A (2003) Rates of spread of marine pathogens. Ecol Lett 6(12):1062–1067. doi:10.1046/j.1461-0248.2003.00545.x
McDowell M, Trump BF (1976) Histologic fixatives suitable for diagnostic light and electron microscopy. Arch Pathol Lab Med 100:405–414
Meredith MP, King JC (2005) Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys Res Let 32(19):5. doi:10.1029/2005GL024042
Morris RL, Hoffman MP, Obar RA, McCafferty SS, Gibbons IR, Leone AD, Cool J, Allgood EL, Musante AM, Judkins KM, Rossetti BJ, Rawson AP, Burgess DR (2006) Analysis of cytoskeletal and motility proteins in the sea urchin genome assembly. Dev Biol 300(1):219–237. doi:10.1016/j.ydbio.2006.08.052
Mydlarz LD, Jones LE, Harvell CD (2006) Innate immunity, environmental drivers and disease ecology of marine and freshwater invertebrates. Ann Rev Ecol Evol Syst 37:251–288. doi:10.1146/annurev.ecolsys.37.091305.110103
Nishimura Y, Nakano K, Mabuchi I (1998) Localization of Rho GTPase in sea urchin eggs. FEBS Let 441:121–126. doi:10.1016/S0014-5793(98)01531-2
Nobes CD, Hall A (1999) Rho GTPases control polarity, protrusion, and adhesion during cell movement. J Cell Biol 144(6):1235–1244. doi:10.1083/jcb.144.6.1235
Pancer Z, Rast JP, Davidson EH (1999) Origins of immunity: transcription factors and homologues of effector genes of the vertebrate immune system expressed in sea urchin coelomocytes. Immunogen 49:773–786. doi:10.1007/s002510050551
Pinsino A, Della Torre C, Sammarini V, Bonaventura R, Amato E, Matranga V (2008) Sea urchin coelomocytes as a novel cellular biosensor of environmental stress: a field study in the Tremiti Island Marine Protected Area, Italy. Cell Biol Toxicol 24(6):541–552. doi:10.1007/s10565-008-9055-0
Plytycz B, Seljelid R (1993) Bacterial clearance by the sea urchin Strongylocentrotus droebachiensis. Dev Comp Immunol 17:283–289. doi:10.1016/0145-305X(93)90047-T
Rabinovitch M (1995) Professional and non-professional phagocytes: an introduction. Trends Cell Biol 5:85–88. doi:10.1016/S0962-8924(00)88955-2
Reynolds ES (1963) The use of the lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212
Ridley AJ (2001) Rho GTPases and cell migration. J Cell Sci 114:2713–2722
Scheibling RE, Feehan C, Lauzon-Guay JS (2010) Disease outbreaks associated with recent hurricanes cause mass mortality of sea urchins in Nova Scotia. Mar Ecol Prog Ser 408:109–116. doi:10.3354/meps08579
Sea Urchin Genome Sequencing Consortium, Sodergren E, Weinstock GM, Davidson EH, Cameron RA, Gibbs RA, Angerer RC, Angerer LM, Arnone MI et al (2006) The genome of the sea urchin Strongylocentrotus purpuratus. Science 314(5801):941–952. doi:10.1126/science.1133609
Secombes CJ (1996) The non-specific immune system: cellular defenses. In: Iwama G, Nakanishi T (eds) The fish immune system: organism, pathogen, and environment. Academic Press, UK, pp 63–95
Secombes CJ, Fletcher TC (1992) The role of phagocytes in the protective mechanisms of fish. Ann Rev Fish Disease 2:53–71. doi:10.1016/0959-8030(92)90056-4
Shirayama Y, Thornton H (2005) Effect of increased atmospheric CO2 on shallow water marine benthos. J Geophys Res 110:C09S08. doi:10.1029/2004JC002618
Silva JRMC, Peck L (2000) Induced in vitro phagocytosis of the Antarctic starfish Odontaster validus (Koehler, 1906) at 0°C. Polar Biol 23(4):225–230. doi:10.1007/s003000050438
Silva JRMC, Vellutini BC, Porto Neto LR, Pressinotti LN, Ramos MC, Cooper EL, Hernandez-Blazquez FJ, Jensch Junior BE, Borges JCS (2007) Resposta imune inespecífica de animais ectotérmicos Antárticos sob temperatura polares. Oecol Bras 11(1):110–112. doi:10.4257/oeco.2007.1101.11
Smith LC, Britten RJ, Davidson EH (1992) SpCoel1, a sea urchin profilin gene expressed specifically in coelomocytes in response to injury. Mol Biol Cell 3:403–414
Smith LC, Rast JP, Brocton V, Terwilleger DP, Nair SV, Bucley KM, Majestke AJ (2006) The sea urchin immune system. ISJ 3:25–29
Steig EJ, Schneider DP, Rutherford SD, Mann ME, Comiso JC, Shindell DT (2009) Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature Lett 457:459–462. doi:10.1038/nature07669
Tajima K, Takeuchi K, Takahata M, Hasegawa M, Watanabe S, Iqbal MM, Ezura Y (2000) Seasonal occurrence of the pathogenic Vibrio sp. of the disease of sea urchin Strongylocentrotus intermedius occurring of low water temperature and the preservation methods of the disease. Grad Sch Fisheries Sci 66(5):799–804
Tajima K, Silva JRMC, Lawrence JM (2007) Immunological Response to bacterial disease. In: Lawrence JM (ed) Edible sea urchin: biology and ecology. Elsevier, UK, pp 167–182
Tauber AI, Chernyak L (1997) Metchnikoff and the origins of immunology, from metaphor to theory. Oxford University Press, New York
Acknowledgments
The authors want to express their acknowledgements to Secirm (Secretaria Interministerial para os Recursos do Mar) and the Brazilian Navy for logistical support in Antarctica, CEBIMar-USP for supporting the pilot experiments and to FAPESP, CAPES and CNPq for financial support.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Branco, P.C., Pressinotti, L.N., Borges, J.C.S. et al. Cellular biomarkers to elucidate global warming effects on Antarctic sea urchin Sterechinus neumayeri . Polar Biol 35, 221–229 (2012). https://doi.org/10.1007/s00300-011-1063-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00300-011-1063-5


