Skip to main content

Advertisement

Log in

Abundant dissolved genetic material in Arctic sea ice Part II: Viral dynamics during autumn freeze-up

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Viruses play a significant role in nutrient cycling within the world’s oceans and are important agents of horizontal gene transfer, but little is know about their entrainment into sea ice or their temporal dynamics once entrained. Nilas, grease ice, pancake ice, first-year sea ice floes up to 78 cm in thickness, and under-ice seawater were sampled widely across Amundsen Gulf (ca. \(71^\circ \hbox{N}, 125^\circ \hbox{W}\)) for concentrations of viruses and bacteria. Here, we report exceptionally high virus-to-bacteria ratios in seawater (45–340) and sea ice (93–2,820) during the autumn freeze-up. Virus concentrations ranged from 4.8 to 27 × 106  ml−1 in seawater and, scaled to brine volume, 5.5 to 170 × 107 ml−1 in sea ice. Large enrichment indices indicated processes of active entrainment from source seawater, or viral production within the ice, which was observed in 2 of 3 bottle incubations of sea ice brine at a temperature (\(-7^\circ\hbox{C}\)) and salinity (\(110 \permille\)) approximating that in situ. Median predicted virus-to-bacteria contact rates (relative to underlying seawater) were greatest in the top of thick sea ice (66–78 cm: 130×) and lowest in the bottom of medium-thickness ice (33–37 cm: 23×). The great abundance of viruses and more frequent interactions between bacteria and viruses predicted in sea ice relative to underlying seawater suggest that sea ice may be a hot spot for virally mediated horizontal gene transfer in the polar marine environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alonso-Sáez L, Sánchez O, Gasol JM, Balagué V, Pedrós-Alió C (2008) Winter-to-summer changes in the composition and single-cell activity of near-surface Arctic prokaryotes. Environ Microbiol 10:2444–2454

    Article  PubMed  Google Scholar 

  • Baross J, Liston J, Morita R (1978) Incidence of Vibrio parahaemolyticus bacteriophages and other Vibrio bacteriophages in marine samples. Appl Environ Microbiol 36:492–499

    PubMed  CAS  Google Scholar 

  • Bayer-Giraldi M, Uhlig C, John U, Mock T, Valentin K (2010) Antifreeze proteins in polar sea ice diatoms: diversity and gene expression in the genus Fragilariopsis. Environ Microbiol 12:1041–1052

    Article  PubMed  CAS  Google Scholar 

  • Beiko RG, Harlow TJ, Ragan MA (2005) Highways of gene sharing in prokaryotes. PNAS 102:14332–14337

    Article  PubMed  CAS  Google Scholar 

  • Börsheim K (1993) Native marine bacteriophages. FEMS Microbiol Ecol 102:141–159

    Article  Google Scholar 

  • Brown JR (2001) Genomic and phylogenetic perspectives on the evolution of prokaryotes. Syst Biol 50:497–512

    Article  PubMed  CAS  Google Scholar 

  • Chiura HX (1997) Generalized gene transfer by virus-like particles from marine bacteria. Aquat Microb Ecol 13:75–83

    Article  Google Scholar 

  • Collins RE, Deming JW (submitted this issue) Abundant dissolved genetic material in Arctic sea ice, part I: extracellular DNA. Polar Biol

  • Collins RE, Carpenter SD, Deming JW (2008) Spatial heterogeneity and temporal dynamics of particles, bacteria, and pEPS in Arctic winter sea ice. J Mar Sys 74:902–917

    Article  Google Scholar 

  • Comeau AM, Chan AM, Suttle CA (2006) Genetic richness of vibriophages isolated in a coastal environment. Environ Microbiol 8:1164–1176

    Article  PubMed  CAS  Google Scholar 

  • Comiso JC, Parkinson CL, Gersten R, Stock L (2008) Accelerated decline in the Arctic sea ice cover. Geophys Res Lett 35:L01,703

    Article  Google Scholar 

  • Cox G, Weeks W (1975) Brine drainage and initial salt entrapment in sodium chloride ice. CRREL Res Rep 345:1–46

    Google Scholar 

  • Cox GFN, Weeks WF (1983) Equations for determining the gas and brine volumes in sea-ice samples. J Glaciol 29:306–316

    Google Scholar 

  • Cox GFN, Weeks WF (1986) Changes in the salinity and porosity of sea-ice samples during shipping and storage. J Glaciol 32:371–375

    CAS  Google Scholar 

  • Gogarten JP, Doolittle WF, Lawrence JG (2002) Prokaryotic evolution in light of gene transfer. Mol Biol Evol 19:2226–2238

    PubMed  CAS  Google Scholar 

  • Gowing MM (2003) Large viruses and infected microeukaryotes in Ross Sea summer pack ice habitats. Mar Biol 142:1029–1040

    Google Scholar 

  • Gowing MM, Riggs BE, Garrison DL, Gibson AH, Jeffries MO (2002) Large viruses in Ross Sea late autumn pack ice habitats. Mar Ecol Prog Ser 241:1–11

    Article  Google Scholar 

  • Gowing MM, Garrison DL, Gibson AH, Krupp JM, Jeffries MO, Fritsen CH (2004) Bacterial and viral abundance in Ross Sea summer pack ice communities. Mar Ecol Prog Ser 279:3–12

    Article  CAS  Google Scholar 

  • Gradinger R, Ikavalko J (1998) Organism incorporation into newly forming Arctic sea ice in the Greenland Sea. J Plankton Res 20:871–886

    Article  Google Scholar 

  • Holmfeldt K, Middelboe M, Nybroe O, Riemann L (2007) Large variabilities in host strain susceptibility and phage host range govern interactions between lytic marine phages and their Flavobacterium hosts. Appl Environ Microbiol 73:6730–6739

    Article  PubMed  CAS  Google Scholar 

  • Janech MG, Krell A, Mock T, Kang JS, Raymond JA (2006) Ice-binding proteins from sea ice diatoms (Bacillariophyceae). J Phycol 42:410–416

    Article  CAS  Google Scholar 

  • Jiang SC, Paul JH (1998) Gene transfer by transduction in the marine environment. Appl Environ Microbiol 64:2780–2787

    PubMed  CAS  Google Scholar 

  • Junge K, Krembs C, Deming J, Stierle A, Eicken H (2001) A microscopic approach to investigate bacteria under in situ conditions in sea-ice samples. Annal Glaciol 33:304–310

    Article  CAS  Google Scholar 

  • Junge K, Eicken H, Deming JW (2004) Bacterial activity at –2 to –20 degrees C in Arctic wintertime sea ice. Appl Environ Microbiol 70:550–557

    Article  PubMed  CAS  Google Scholar 

  • Kiko R (2010) Acquisition of freeze protection in a sea-ice crustacean through horizontal gene transfer? Polar Biol 33:543–556

    Article  Google Scholar 

  • Kokjohn T (1989) Transduction: mechanism and potential for gene transfer in the environment. In: Levy S, Miller R (eds) Gene transfer in the environment. McGraw-Hill Publishing Co., New York, pp 73–97

    Google Scholar 

  • Lawrence JG, Hendrickson H (2003) Lateral gene transfer: when will adolescence end? Mol Microbiol 50:739–749

    Article  PubMed  CAS  Google Scholar 

  • Laybourn-Parry J, Marshall W, Madan N (2007) Viral dynamics and patterns of lysogeny in saline Antarctic lakes. Polar Biol 30:351–358

    Article  Google Scholar 

  • Madan NJ, Marshall WA, Laybourn-Parry J (2005) Virus and microbial loop dynamics over an annual cycle in three contrasting Antarctic lakes. Freshwater Biol 50:1291–1300

    Article  Google Scholar 

  • Maranger R, Bird D (1995) Viral abundance in aquatic systems: a comparison between marine and fresh waters. Mar Ecol Prog Ser 121:217–226

    Article  Google Scholar 

  • Maranger R, Bird DF, Juniper SK (1994) Viral and bacterial dynamics in Arctic sea-ice during the spring algal bloom near Resolute, NWT, Canada. Mar Ecol Prog Ser 111:121–127

    Article  Google Scholar 

  • Middelboe M, Nielsen TG, Bjørnsen PK (2002) Viral and bacterial production in the North Water: in situ measurements, batch-culture experiments and characterization and distribution of a virus-host system. Deep-Sea Res Pt II 49:5063–5079

    Article  Google Scholar 

  • Miller R (2001) Environmental bacteriophage-host interactions: factors contribution to natural transduction. Antonie van Leeuwenhoek 79:141–147

    Article  PubMed  CAS  Google Scholar 

  • Murray AG, Jackson GA (1992) Viral dynamics: a model of the effects of size shape, motion and abundance of single-celled planktonic organisms and other particles. Mar Ecol Prog Ser 89:103–116

    Article  Google Scholar 

  • Patel A, Noble RT, Steele JA, Schwalbach MS, Hewson I, Fuhrman JA (2007) Virus and prokaryote enumeration from planktonic aquatic environments by epifluorescence microscopy with SYBR Green I. Nat Protoc 2:269–276

    Article  PubMed  CAS  Google Scholar 

  • Payet JP, Suttle CA (2008) Physical and biological correlates of virus dynamics in the southern Beaufort Sea and Amundsen Gulf. J Mar Sys 74:933–945

    Article  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0

  • Raymond JA, Fritsen C, Shen K (2007) An ice-binding protein from an Antarctic sea ice bacterium. FEMS Microbiol Ecol 61:214–221

    Article  PubMed  CAS  Google Scholar 

  • Replicon J, Frankfater A, Miller RV (1995) A continuous culture model to examine factors that affect transduction among Pseudomonas aeruginosa strains in freshwater environments. Appl Environ Microbiol 61:3359–3366

    PubMed  CAS  Google Scholar 

  • Riedel A, Michel C, Gosselin M, LeBlanc B (2007) Enrichment of nutrients, exopolymeric substances and microorganisms in newly formed sea ice on the Mackenzie shelf. Mar Ecol Prog Ser 342:55–67

    Article  CAS  Google Scholar 

  • Säwström C, Lisle J, Anesio A, Priscu J, Laybourn-Parry J (2008) Bacteriophage in polar inland waters. Extremophiles 12:167–175

    Article  PubMed  Google Scholar 

  • Saye DJ, Ogunseitan O, Sayler GS, Miller RV (1987) Potential for transduction of plasmids in a natural freshwater environment: effect of plasmid donor concentration and a natural microbial community on transduction in Pseudomonas aeruginosa. Appl Environ Microbiol 53:987–995

    PubMed  CAS  Google Scholar 

  • Steward G, Smith D, Azam F (1996) Abundance and production of bacteria and viruses in the Bering and Chukchi Seas. Mar Ecol Prog Ser 131:287–300

    Article  Google Scholar 

  • Wells LE, Deming JW (2006a) Effects of temperature, salinity and clay particles on inactivation and decay of cold-active marine Bacteriophage 9A. Aquat Microb Ecol 45:31–39

    Article  Google Scholar 

  • Wells LE, Deming JW (2006b) Modelled and measured dynamics of viruses in Arctic winter sea-ice brines. Environ Microbiol 8:1115–1121

    Article  PubMed  Google Scholar 

  • Wen K, Ortmann AC, Suttle CA (2004) Accurate estimation of viral abundance by epifluorescence microscopy. Appl Environ Microbiol 70:3862–3867

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm S, Brigden S, Suttle C (2002) A dilution technique for the direct measurement of viral production: a comparison in stratified and tidally mixed coastal waters. Microb Ecol 43:168–173

    Article  PubMed  CAS  Google Scholar 

  • Winget DM, Williamson KE, Helton RR, Wommack KE (2005) Tangential flow diafiltration: an improved technique for estimation of virioplankton production. Aquat Microb Ecol 41:221–232

    Article  Google Scholar 

  • Winter C, Herndl GJ, Weinbauer MG (2004) Diel cycles in viral infection of bacterioplankton in the North Sea. Aquat Microb Ecol 35:207–216

    Article  Google Scholar 

  • Wommack KE, Colwell RR (2000) Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev 64:69–114

    Article  PubMed  CAS  Google Scholar 

  • Yager PL, Connelly TL, Mortazavi B, Wommack KE, Bano N, Bauer JE, Opsahl S, Hollibaugh JT (2001) Dynamic bacterial and viral response to an algal bloom at subzero temperatures. Limnol Oceanogr 46:790–801

    Article  CAS  Google Scholar 

  • Zinder ND, Lederberg J (1952) Genetic exchange in Salmonella. J Bacteriol 64:679–699

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the captain, crew, and scientific party of the CCGS Amundsen for a successful cruise. We gratefully acknowledge M. Pucko, W. Walkusz, P. Galand, B. Else, N. Sutherland, and M. Gupta for field assistance, C. Marrasé for assistance with chlorophyll a measurements, J. Islefson, D. Barber and CFL Team 2 for ice microstructure information and the use of ice-coring equipment, and S. Carpenter for help with laboratory analyses. The input of three reviewers helped to improve the manuscript, we thank them for their efforts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Eric Collins.

Additional information

This article belongs to the special issue “Circumpolar Flaw Lead Study (CFL)”, coordinated by J. Deming and L. Fortier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (359 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collins, R.E., Deming, J.W. Abundant dissolved genetic material in Arctic sea ice Part II: Viral dynamics during autumn freeze-up. Polar Biol 34, 1831–1841 (2011). https://doi.org/10.1007/s00300-011-1008-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-011-1008-z

Keywords

Navigation