Polar Biology

, Volume 34, Issue 9, pp 1385–1397 | Cite as

A large new species of the genus Ptilocrinus (Echinodermata, Crinoidea, Hyocrinidae) from Antarctic seamounts

  • Marc Eléaume
  • Lenaïg G. Hemery
  • David A. Bowden
  • Michel Roux
Original Paper


Ptilocrinus amezianeae n. sp. is a new species of stalked crinoid attributed to the family Hyocrinidae. Forty-five specimens were collected from seamounts north of the Ross Sea, and one specimen from the Kerguelen Plateau at depths ranging from 450 to 1,680 m. The collection from Admiralty and Scott seamounts constitutes the first example of a hyocrinid population known both from in situ photographs and from numerous collected specimens ranging from small juvenile to large adult. Variation in theca and stalk articulation characters throughout ontogeny is congruent with the molecular data and indicates that all the specimens examined belong to a single species. Tegmen and pinnule architecture, brachial arrangement, and stalk articular facets indicate that Ptilocrinus amezianeae n. sp. has close affinities with P. clarki and P. pinnatus from the northeastern Pacific and displays the most derived characters among these three species. Two cases of true arm division into two unequal branches suggest that Ptilocrinus and Calamocrinus are closely related. The picture and video transects on Admiralty seamount show a patchy distribution of living specimens with patches of mean density ca. 2.6 individuals m-2. In situ photographs also document predation by a sea urchin and a sea star on tegmen and proximal arms. The COI gene sequences analyzed in 25 specimens from Admiralty and Scott seamounts display low pairwise distances, low nucleotidic diversity, and intermediate haplotype diversity. These results, together with disarticulated ossicles and attachment disks observed on in situ photographs, indicate that the population investigated here is in decline.


Echinodermata Stalked crinoids Hyocrinidae Ptilocrinus Antarctica Seamount Ross sea Kerguelen plateau 



Census of Antarctic Marine Life


International Polar Year


National Institute of Water and Atmospheric Research


Muséum national d’Histoire naturelle


Canadian Center for DNA Barcoding


Biodiversity Institute of Ontario



Specimens, data, and photographs of P. amezianeae n. sp. were collected by and made available through the New Zealand International Polar Year-Census of Antarctic Marine Life Project (NZ IPY-CAML project IPY2007-01). We thank Kareen Schnabel, Sadie Mills and Owen Anderson at NIWA, Rick Webster at the Museum of New Zealand Te Papa Tongarewa, Fabien Aubert and Nicolas Gasco through the TAAF administration for providing specimens. The SEM were done using the JEOL 840A at the Plateforme de Microscopie Electronique of the Muséum national d’Histoire naturelle. We thank the ANTFLOCKS project funded by the French national research agency (“ANR”; USAR n°07-BLAN-0213-01). Funding parties also include the Département des Milieux et Peuplements Aquatiques at the Muséum national d’Histoire naturelle in Paris, the Museum Victoria in Melbourne, Australia (travel grant to ME and LH), NIWA in Wellington, New Zealand (travel grant to ME) and the French Polar Institute IPEV (travel grant to ME and LH). DB was funded under NZ IPY-CAML project IPY2007-01. We also thank Pr Fran Ramil of the Departamento de Ecoloxia e Bioloxia Animal, Facultade de Ciencias do Mar, Universidade de Vigo, España.


  1. Améziane N, Roux M (1997) Biodiversity and historical biogeography of stalked crinoids (Echinodermata) in the deep sea. Biodivers Conserv 6:1557–1570. doi: 10.1023/A:1018370620870 CrossRefGoogle Scholar
  2. Améziane N, Roux M (2005) Environmental control versus phylogenic fingerprint in ontogeny: the example of the development of the stalk in the genus Guillecrinus (stalked crinoids, Echinodermata). J Nat Hist 39(30):2815–2860. doi: 10.1080/00222930500060595 CrossRefGoogle Scholar
  3. Améziane N, Roux M (2011) Stalked crinoids from Southern Tasmanian seamounts. Part 1: family Hyocrinidae. J Nat Hist 45:137–170. doi: 10.1080/00222933.2010.520825 CrossRefGoogle Scholar
  4. Aronson RB, Blake DB, Oji T (1997) Retrograde community structure in the late Eocene of Antarctica. Geology 25(10):903–906. doi: 10.1130/0091-7613(1997)025<0903:RCSITL>2.3.CO;2 CrossRefGoogle Scholar
  5. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, CambridgeGoogle Scholar
  6. Bather FA (1908) Ptilocrinus antarcticus n. sp.: a crinoid dredged by the Belgian Antarctic Expedition. Bull Acad R Sci Belg 3:296–299Google Scholar
  7. Baumiller TK (2008) Crinoid ecological morphology. Ann Rev Earth and Pl Sc 36:221–249. doi: 10.1146/ CrossRefGoogle Scholar
  8. Baumiller TK, Mooi R, Messing CG (2008) Urchins in the meadow: paleobiological and evolutionary implications of cidaroid predation on crinoids. Paleobiology 34(1):22–34. doi: 10.1666/07031.1 CrossRefGoogle Scholar
  9. Baumiller TK, Salamon MA, Gorzelak P, Mooi R, Messing CG, Gahn FJ (2010) Post-Paleozoic crinoid radiation in response to benthic predation preceded the Mesozoic marine revolution. Proc Natl Acad Sci USA 107(13):5893–5896. doi: 10.1073/pnas.0914199107 PubMedCrossRefGoogle Scholar
  10. Bowden DA, Schiaparelli S, Clark MR, Rickard GJ (2011) A lost world? Archaic crinoid-dominated assemblages on an Antarctic seamount. Deep-Sea Res Pt II 58:119–127. doi: 10.1016/j.dsr2.2010.09.006 CrossRefGoogle Scholar
  11. Conan G, Roux M, Sibuet M (1981) A photographic survey of a population of the stalked crinoid Diplocrinus (Annacrinus) wyvillethomsoni (Echinodermata) from the bathyal slope of the Bay of Biscay. Deep-Sea Res 28(5):441–453. doi: 10.1016/0198-0149(81)90136-9
  12. David J, Roux M, Messing CG, Améziane N (2006) Revision of the pentacrinid stalked crinoids of the genus Endoxocrinus (Echinodermata, Crinoidea), with a study of environmental control of characters and its consequences for taxonomy. Zootaxa 1156:1–50Google Scholar
  13. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3(5):294–299PubMedGoogle Scholar
  14. Fujita T, Otha S, Oji T (1987) Photographic observations of the stalked crinoids Metacrinus rotundus Carpenter in Suruga Bay, Central Japan. J Oceanogr 43(6):333–343. doi: 10.1007/BF02109286 Google Scholar
  15. Genin A, Dayton PK, Lonsdale PF, Spiess FN (1986) Corals on seamounts provide evidence of current acceleration over deep-sea topography. Nature 322:59–61. doi: 10.1038/322059a0 CrossRefGoogle Scholar
  16. Gorzelak P, Salamon MA (2009) Signs of benthic predation on late Jurassic stalked crinoids, preliminary data. Palaios 24:70–73. doi: 10.2110/palo.2008.p08-032r CrossRefGoogle Scholar
  17. Gutt J, Barratt I, Domack E, d’Udekem d’Acoz C, Dimmler W, Grémare A., Heilmayer O, Isla E, Janussen D, Jorgensen E, Kock K-H, Lehnert LS, López-Gonzáles P, Langner S, Linse K, Manjón-Cabeza ME, Meißner M, Montiel A, Raes M, Robert H, Rose A, Schepisi ES, Saucède T, Scheidat M, Schenke HW, Seiler J, Smith C (2011). Biodiversity change after climate-induced ice-shelf collapse in the Antarctic. Deep-Sea Res Pt II. doi: 10.1016/j.dsr2.2010.05.024
  18. Ivanova NV, Dewaard JR, Hebert PDN (2006) An inexpensive, automation-friendly protocol for recovering high-quality DNA. Mol Ecol Resour 6(4):998–1002. doi: 10.1111/j.1471-8286.2006.01428.x Google Scholar
  19. John DD (1937) Zoology: Crinoidea. Expédition antarctique belge. Résultats du voyage de la Belgica en 1897–99 sous le commandement de A de Gerlache de Gomery. Rapport scientifique, JE Bushmann, Anvers, pp 1–11Google Scholar
  20. Kaufmann, RS, Wilson RR Jr. (1991) A summary and bibliography of seamount biota. Scripps Institution Oceanographic Reference. Series 91–8. La JollaGoogle Scholar
  21. Librado P, Rosas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452PubMedCrossRefGoogle Scholar
  22. Macurda DB, Meyer DL (1974) Feeding posture of modern stalked crinoids. Nature 247:394–396CrossRefGoogle Scholar
  23. Messing CG (1985) Submersible observations of deep-water crinoid assemblages in the tropical western Atlantic Ocean. In: Keegan BF, O’Connor BDS (eds) Echinodermata. Balkema, Rotterdam, pp 185–193Google Scholar
  24. Messing CG (1994) Crinoid meadows of the West Indies: distribution, response to flow, disarticulation, sediment production and taphonomy. In: David B, Guille A, Feral JP, Roux M (eds) Echinoderms through Time. Balkema, Rotterdam, p 245Google Scholar
  25. Meyer DL (1985) Evolutionary implications of predation on Recent comatulid crinoids from the Great Barrier Reef. Paleobiology 11(2):154–164Google Scholar
  26. Mironov AN, Sorokina OA (1998) Sea lilies of the order Hyocrinida (Echinodermata, Crinoidea). Zoologicheskie Issledovania 2:1–117Google Scholar
  27. Oji T (1996) Is predation intensity reduced with increasing depth? Evidence from the West Atlantic stalked crinoid Endoxocrinus parrae (Gervais) and implications for the Mesozoic marine revolution. Paleobiology 22(3):339–351Google Scholar
  28. Oji T, Ogawa Y, Hunter AW, Kitazawa K (2009) Discovery of dense aggregations of stalked crinoids in Izu-Ogasawa trench, Japan. Zool Sci 26(6):406–408PubMedCrossRefGoogle Scholar
  29. Roux M (1980) Les crinoïdes pédonculés (Echinodermes) photographiés sur les dorsales océaniques de l’Atlantique et du Pacifique. Implications biogéographiques. CR Acad Sc Paris, série D 291:901–904Google Scholar
  30. Roux M (1985) Les crinoïdes pédonculés (Echinodermes) de l’Atlantique N.E.: inventaire, écologie et biogéographie. In: Laubier L, Monniot C (eds) Peuplements profonds du Golfe de Gascogne: campagne BIOGAS. Ifremer, Brest, pp 479–489Google Scholar
  31. Roux M (1987) Evolutionary ecology and biogeography of recent stalked crinoids as a model for the fossil record. In: Jangoux M, Lawrence JM (eds) Echinoderm studiesvolume 2. Balkema, Rotterdam, pp 1–53Google Scholar
  32. Roux M (1994) The CALSUB cruise on the bathyal slopes off New Caledonia. In: Crosnier A (ed) Résultat des campagnes MUSORSTOM, vol 12. Memoir Mus Natl Hist 161:9–47Google Scholar
  33. Roux M (2002) Two new species of the genus Thalassocrinus (Echinodermata: Crinoidea: Hyocrinidae) from the Pacific Ocean. Species Divers 7(2):173–186Google Scholar
  34. Roux M (2004) New hyocrinid crinoids (Echinodermata) from submersible investigations in the Pacific Ocean. Pac Sci 58(4):597–613CrossRefGoogle Scholar
  35. Roux M, Bohn JM (2010) Revision of the genus Gephyrocrinus Kœhler and Bather, 1902 (Echinodermata, Crinoidea, Hyocrinidae). Zoosystema 32(3):425–437CrossRefGoogle Scholar
  36. Roux M, Lambert P (2011) Two new species of stalked crinoids from the north-eastern Pacific in the genera Gephyrocrinus and Ptilocrinus (Echinodermata, Crinoidea, Hyocrinidae). Effects of ontogeny and variability on hyocrinid taxonomy. Zootaxa 2825:1–54Google Scholar
  37. Roux M, Pawson DL (1999) Two new Pacific Ocean species of hyocrinid crinoids (Echinodermata), with comments on presumed giant-dwarf gradients related to seamounts and abyssal plains. Pac Sci 53(3):289–298Google Scholar
  38. Roux M, Messing CG, Améziane N (2002) Artificial keys to the genera of living stalked crinoids (Echinodermata). B Mar Sci 70(3):799–830Google Scholar
  39. Schneider JA (1988) Frequency of arm regeneration of comatulid crinoids in relation to life habit. In: Burke RD, Mladenov PV, Lambert P, Parsley RL (eds) Echinoderm biology. Balkema, Rotterdam, pp 531–538Google Scholar
  40. Shortis MR, Seager JW, Williams A, Baker BA, Sherlock M (2007) A towed body stereo-video system for deep water benthic habitat surveys. In: Grun A, Kahmen H (eds) 8th Conference on optical 3-D measurement techniques. ETH Zurich, Zurich, pp 150–157Google Scholar
  41. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  42. Ward RD, Holmes BH, O’Hara TD (2008) DNA bar coding discriminates echinoderm species. Mol Ecol Resour 8:1202–1211PubMedCrossRefGoogle Scholar
  43. Wilson RR, Kaufmann RS (1987) Seamount biota and biogeography. In: Keating B, Fryer P, Baleza R, Boehlert G (eds) Seamount. Islands and Atolls. American geophysical union, Washington, DC, pp 355–377Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Marc Eléaume
    • 1
  • Lenaïg G. Hemery
    • 1
  • David A. Bowden
    • 2
  • Michel Roux
    • 1
  1. 1.Muséum national d’Histoire naturelle, Département Milieux et Peuplements Aquatiques, UMR7208-BOREA-MNHN/UPMC/IRDParis Cedex 05France
  2. 2.National Institute of Water and Atmospheric Research Ltd (NIWA)Kilbirnie, WellingtonNew Zealand

Personalised recommendations