Polar Biology

, Volume 34, Issue 4, pp 603–608 | Cite as

Brackish meltponds on Arctic sea ice—a new habitat for marine metazoans

  • Maike KramerEmail author
  • Rainer Kiko
Short Note


Meltponds on Arctic sea ice have previously been reported to be devoid of marine metazoans due to fresh-water conditions. The predominantly dark frequently also green and brownish meltponds observed in the Central Arctic in summer 2007 hinted to brackish conditions and considerable amounts of algae, possibly making the habitat suitable for marine metazoans. Environmental conditions in meltponds as well as sympagic meiofauna in new ice covering pond surfaces and in rotten ice on the bottom of ponds were studied, applying modified techniques from sea-ice and under-ice research. Due to the very porous structure of the rotten ice, the meltponds were usually brackish to saline, providing living conditions very similar to sub-ice water. The new ice cover on the surface had similar characteristics as the bottom layer of level ice. The ponds were thus accessible to and inhabitable by metazoans. The new ice cover and the rotten ice were inhabited by various sympagic meiofauna taxa, predominantly ciliates, rotifers, acoels, nematodes and foraminiferans. Also, sympagic amphipods were found on the bottom of meltponds. We suggest that, in consequence of global warming, brackish and saline meltponds are becoming more frequent in the Arctic, providing a new habitat to marine metazoans.


Meltponds Sea ice Climate change Sympagic meiofauna Under-ice amphipods 



We first of all thank Iris Werner (Institute for Polar Ecology, Kiel, Germany) for her constant support and helpful advice on the manuscript. We thank everybody who participated in sea-ice observations and helped collecting and preparing samples during the ARK–XXII/2 cruise, particularly Stefan Siebert (Brown University, Providence, USA) and Alice Schneider (Institute for Polar Ecology). The assistance of captain and crew of RV Polarstern and the support of the chief scientist Ursula Schauer (Alfred-Wegener Institute, Bremerhaven, Germany) during ARK–XXII/2 are gratefully acknowledged. Thanks are also due to various sea-ice physics and modelling colleagues for fruitful discussions about possible changes in meltpond properties during the IGS 2010 conference. The constructive comments of two anonymous reviewers are gratefully acknowledged. This research was supported by the Deutsche Forschungsgesellschaft WE 2536/11–1,–2.

Supplementary material

300_2010_911_MOESM1_ESM.pdf (65 kb)
PDF (65 KB)
300_2010_911_MOESM2_ESM.pdf (106 kb)
PDF (107 KB)
300_2010_911_MOESM3_ESM.pdf (50 kb)
PDF (50 KB)


  1. Assur A (1958) Composition of sea ice and its tensile strength. In: Arctic sea ice: proceedings of the conference conducted by the Division of Earth Sciences and supported by the Office of Naval Research, vol 598. National Academy of Sciences, National Research Council, Washington, DC. Nat Res Council Publ, pp 106–138Google Scholar
  2. Barber DG, Galley R, Asplin MG, De Abreu R, Warner KA, Pucko M, Gupta M, Prinsenberg S, Julien S (2009) Perennial pack ice in the southern Beaufort Sea was not as it appeared in the summer of 2009. Geophys Res Lett 36(24):L24501. doi: 10.1029/2009GL041434 CrossRefGoogle Scholar
  3. Brinkmeyer R, Glöckner FO, Helmke E, Amann R (2004) Predominance of ß-proteobacteria in summer melt pools on Arctic pack ice. Limnol Oceanogr 49(4):1013–1021. doi: 0.4319/lo.2004.49.4.1013 CrossRefGoogle Scholar
  4. Carstens M (2001) Zur Ökologie von Schmelzwassertümpeln auf arktischem Meereis—Charakteristika, saisonale Dynamik und Vergleich mit anderen aquatischen Lebensräumen polarer Regionen. Dissertation, Institut für Polarökologie, Universität KielGoogle Scholar
  5. Drobot S, Stroeve J, Maslanik J, Emery W, Fowler C, Kay J (2008) Evolution of the 2007–2008 Arctic sea ice cover and prospects for a new record in 2008. Geophys Res Lett 35(19):L19501. doi: 10.1029/2008GL035316 CrossRefGoogle Scholar
  6. Eicken H, Alexandrov V, Gradinger R, Ilyin G, Ivanov B, Luchetta A, Martin T, Olsson K, Reimnitz E, Pác R, Poniz P, Weissenberger J (1994) Distribution, structure and hydrography of surface melt puddles. In: Fütterer DK (ed) Die Expedition ARCTIC ’93: der Fahrtabschnitt ARK-IX/4 mit FS “Polarstern” 1993. Ber Polarforsch, vol 149. Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, pp 73–76Google Scholar
  7. Eicken H, Krouse HR, Kadko D, Perovich DK (2002) Tracer studies of pathways and rates of meltwater transport through Arctic summer sea ice. J Geophys Res 107(C10):8046. doi: 10.1029/2000JC000583 CrossRefGoogle Scholar
  8. Eicken H, Grenfell TC, Perovich DK, Richter-Menge JA, Frey K (2004) Hydraulic controls of summer Arctic pack ice albedo. J Geophys Res 109(C8):C08007. doi: 10.1029/2003JC001989 CrossRefGoogle Scholar
  9. Flocco D, Feltham DL (2007) A continuum model of melt pond evolution on Arctic sea ice. J Geophys Res 112(C8):C08016. doi: 10.1029/2006JC003836 CrossRefGoogle Scholar
  10. Flocco D, Feltham DL, Turner AK (2010) Incorporation of a physically based melt pond scheme into the sea ice component of a climate model. J Geophys Res 115(C8):C08012. doi: 10.1029/2009JC005568 CrossRefGoogle Scholar
  11. Frankenstein G, Garner R (1967) Equations for determining the brine volume of sea ice from −0.5° to −22.9°C. J Glaciol 6(48):943–944Google Scholar
  12. Garrison DL, Buck KR (1986) Organism losses during ice melting: a serious bias in sea ice community studies. Polar Biol 6(4):237–239. doi: 10.1007/BF00443401 CrossRefGoogle Scholar
  13. Gradinger R (1998) Environmental controls of Arctic pack ice algal composition and development—a synopsis, Part A. Habilitation thesis, Institut für Polarökologie, Universität KielGoogle Scholar
  14. Gradinger R (1999) Vertical fine structure of the biomass and composition of algal communities in Arctic pack ice. Mar Biol 133(4):745–754. doi: 10.1007/s002270050516 CrossRefGoogle Scholar
  15. Gradinger R, Nürnberg D (1996) Snow algal communities on Arctic pack ice floes dominated by Chlamydomonas nivalis (Bauer) Wille. In: Proceedings of NIPR symposium on polar biology, vol 9. National Institute of Polar Research, Tokyo, pp 35–43Google Scholar
  16. Haas C, Pfaffling A, Hendricks S, Rabenstein L, Etienne JL, Rigor I (2008) Reduced ice thickness in Arctic transpolar drift favors rapid ice retreat. Geophys Res Lett 35(17):L17501. doi: 10.1029/2008GL034457 CrossRefGoogle Scholar
  17. Horner R, Ackley SF, Dieckmann GS, Gulliksen B, Hoshiai T, Legendre L, Melnikov IA, Reeburgh WS, Spindler M, Sullivan CW (1992) Ecology of sea ice biota. 1. Habitat, terminology, and methodology. Polar Biol 12(3–4):417–427. doi: 10.1007/BF00243113 Google Scholar
  18. Ikävalko J, Thomsen HA, Carstens M (1996) A preliminary study of NE Greenland shallow meltwater ponds with particular emphasis on loricate and scale-covered forms (Choanoflagellida, Chrysophyceae sensu lato, Synurophyceae, Heliozoea), including the descriptions of Epipyxis thamnoides sp. nov. and Pseudokephyrion poculiforme sp. nov. (Chrysophyceae). Arch Protistenkd 147:29–42Google Scholar
  19. Kiko R, Kern S, Kramer M, Mütze H (submitted) Colonization of newly forming Arctic sea ice by meiofauna—a case study for the future Arctic? Mar Ecol Prog SerGoogle Scholar
  20. Kramer M, Swadling KM, Meiners KM, Kiko R, Scheltz A, Nicolaus M, Werner I (2010) Antarctic sympagic meiofauna in winter: comparing diversity, abundance and biomass between perennially and seasonally ice-covered regions. Deep-Sea Res II. doi: 10.1016/j.dsr2.2010.10.029
  21. Kramer M, Struck U, Schukat A, Werner I, Kiko R (submitted) Trophic positions of Arctic and Antarctic sympagic meiofauna and its role in cryo-pelagic coupling identified by stable isotopes and fatty acids. Mar Ecol Prog SerGoogle Scholar
  22. Kwok R, Cunningham GF, Wensnahan M, Rigor I, Zwally HJ, Yi D (2009) Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008. J Geophys Res 114(C7):C07005. doi: 10.1029/2009JC005312 CrossRefGoogle Scholar
  23. Markus T, Stroeve JC, Miller J (2009) Recent changes in Arctic sea ice melt onset, freezeup, and melt season length. J Geophys Res 114(C12):C12024. doi: 10.1029/2009JC005436 CrossRefGoogle Scholar
  24. Maslanik JA, Fowler C, Stroeve J, Drobot S, Zwally J, Yi D, Emery W (2007) A younger, thinner Arctic ice cover: increased potential for rapid, extensive sea-ice loss. Geophys Res Lett 34(24):L24501. doi: 10.1029/2007GL032043 CrossRefGoogle Scholar
  25. Nghiem SV, Rigor IG, Perovich DK, Clemente-Colón P, Weatherly JW, Neumann G (2007) Rapid reduction of Arctic perennial sea ice. Geophys Res Lett 34(19):L19504CrossRefGoogle Scholar
  26. Schauer U (2008) The expedition ARKTIS-XXII/2 of the research vessel “Polarstern” in 2007. Ber Polarforsch Meeresforsch, vol 579. AWI, BremerhavenGoogle Scholar
  27. Schünemann H, Werner I (2005) Seasonal variations in distribution patterns of sympagic meiofauna in Arctic pack ice. Mar Biol 146(6):1091–1102. doi: 10.1007/s00227-004-1511-7 CrossRefGoogle Scholar
  28. von Juterzenka K, Lischka S, Meiner K, Okolodkov YB, Zhang Q (1997) Characteristics and biota of small melt pools. In: Stein R, Fahl K (eds) Scientific cruise report of the Arctic expedition ARK-XIII/2 of RV “Polarstern” in 1997. Ber Polarforsch, vol 255. Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, pp 45–46Google Scholar
  29. Werner I (2006) Seasonal dynamics of sub-ice fauna below pack ice in the Arctic (Fram Strait). Deep-Sea Res I 53(2):294–309. doi: 10.1016/j.dsr.2005.11.001 CrossRefGoogle Scholar
  30. Werner I, Martinez Arbizu P (1999) The sub-ice fauna of the Laptev Sea and the adjacent Arctic Ocean in summer 1995. Polar Biol 21(2):71–79. doi: 10.1007/s003000050336 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institute for Polar Ecology (IPÖ)KielGermany
  2. 2.Leibniz Institute of Marine Sciences (IFM-GEOMAR), Biological OceanographyKielGermany

Personalised recommendations