Skip to main content

Advertisement

Log in

Cadmium and copper contents in a freshwater fish species (brook trout, Salvelinus fontinalis) from the subantarctic Kerguelen Islands

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The subantarctic Kerguelen Islands (49°S, 70°E) contain freshwaters among the most isolated in the world from direct human activities. Cadmium and copper concentrations were analyzed in muscle and liver tissues of 57 non-migratory brook trout (Salvelinus fontinalis) inhabiting the Sud River of Kerguelen Islands. The mean cadmium concentration in liver was 1.13 μg/g dry wt, within the range of levels measured in liver of marine fish from the Southern Ocean. Muscular Cd levels (0.12 μg/g dry wt) were roughly ten times higher than those measured in Kerguelen’s marine fish species. Copper levels were very high in the two organs (62.27 μg/g dry wt in liver and 3.02 μg/g dry wt in muscle) compared to those detected in fish from the Southern Ocean. Regarding the seasonal trend, the highest Cu and Cd muscular levels were measured in fish at the end of the austral winter, whereas the highest hepatic levels were observed at the end of the austral summer. Moreover, hepatic cadmium levels were higher in females than in males. These results could be related to brook trout spawning physiological preparations and foraging behavior during the summer period. We provide here the first results about Cu and Cd levels in liver and muscle of a freshwater fish species in an insular subantarctic context. They are in agreement with the high cadmium contamination found in fish of the Southern Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abollino O, Aceto M, Buoso S, Gasparon M, Green WJ, Malandrino M, Mentasti E (2004) Distribution of major, minor and trace elements in lake environments of Antarctica. Antarct Sci 16:277–291

    Article  Google Scholar 

  • Ahn IY, Lee SH, Kim KT, Shim JH, Kim DY (1995) Baseline heavy metal concentrations in the antarctic clam, Laternula elliptica in Maxwell Bay, King George Island, Antarctica. Mar Pollut Bull 32:592–598

    Article  Google Scholar 

  • Alibabic V, Vahcic N, Bajramovic M (2007) Bioaccumulation of metals in fish of salmonidae family and the impact on fish meat quality. Environ Monit Assess 131:349–364

    Article  CAS  PubMed  Google Scholar 

  • Amundsen PA, Staldvik FJ, Lukin AA, Kashulin NA, Popova OA, Reshetnikov YS (1997) Heavy metal contamination in freshwater fish from the border region between Norway and Russia. Sci Total Environ 201:211–224

    Article  CAS  PubMed  Google Scholar 

  • Bargagli R (2001) Trace metals in Antarctic organisms and the development of circumpolar biomonitoring networks. Rev Environ Contam Toxicol 171:53–110

    CAS  Google Scholar 

  • Bargagli R (2008) Environmental contamination in Antarctic ecosystems. Sci Total Environ 400:212–226

    Article  CAS  PubMed  Google Scholar 

  • Bargagli R, Nelli L, Ancora S, Focardi S (1996) Elevated cadmium accumulation in marine organisms from Terra Nova Bay (Antarctica). Polar Biol 16:513–520

    Article  Google Scholar 

  • Bargagli R, Corsolini S, Fossi MC, Sanchez-Hernandez JC, Focardi S (1998) Antarctic fish Trematomus bernachii as biomonitor of environmental contaminants at Terra Nova Bay Station (Ross Sea). Mem Natl Insdt Polar Res 52:220–229

    CAS  Google Scholar 

  • Besser JM, Brumbaugh WG, May TW, Church SE, Kimball BA (2001) Bioavailability of metals in stream food webs and hazards to brook trout (Salvelinus fontinalis) in the Upper Animas River Watershed, Colorado. Arch Environ Contam Toxicol 40:48–59

    Article  CAS  PubMed  Google Scholar 

  • Bogillo V, Bazylevska M (2007) Variations of organochlorine contaminants in Antarctica. The fate of persistent organic pollutants in the environment, pp 251–267

  • Brotheridge RM, Newton KE, Taggart MA, McCormick PH, Evans SW (1998) Nickel, cobalt, zinc and copper levels in brown trout (Salmo trutta) from the river Otra, Southern Norway. Analyst 123:69–72

    Article  CAS  PubMed  Google Scholar 

  • Bustamante P, Cherel Y, Caurant F, Miramand P (1998a) Cadmium, copper and zinc in octopuses from Kerguelen Islands, Southern Indian Ocean. Polar Biol 19:264–271

    Article  Google Scholar 

  • Bustamante P, Caurant F, Fowler SW, Miramand P (1998b) Cephalopods as a vector for the transfer of cadmium to top marine predators in the North-East Atlantic Ocean. Sci Total Environ 220:71–80

    Article  CAS  PubMed  Google Scholar 

  • Bustamante P, Bocher P, Chérel Y, Miramand P, Caurant F (2003) Distribution of trace elements in the tissues of benthic and pelagic fish from the Kerguelen Islands. Sci Total Environ 313:25–39

    Article  CAS  PubMed  Google Scholar 

  • Camusso M, Vigano L, Balestrini R (1995) Bioconcentration of trace metals in rainbow trout: a field study. Ecotoxicol Environ Saf 31:133–141

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury MJ, Baldisserotto B, Wood CM (2005) Tissue-specific cadmium and metallothionein levels in rainbow trout chronically acclimated to waterborne or dietary cadmium. Arch Environ Contam Toxicol 48:381–390

    Article  CAS  PubMed  Google Scholar 

  • Commission Regulation (EC) No 1881/2006 (2006) setting maximum level for certain contaminants in food stuffs. Official Journal of the European Union: 20.12.2006

  • Corsolini S (2009) Industrial contaminants in Antarctic biota. J Chromatogr A 1216:598–612

    Article  CAS  PubMed  Google Scholar 

  • Cusimano RF, Brakke DF, Chapman GA (1986) Effects of pH on toxicities of cadmium, copper and zinc to steelhead trout (Salmo gairdneri). Can J Fish Aquat Sci 43:1497–1503

    Article  CAS  Google Scholar 

  • Dallinger R, Egg M, Köck G, Hofer R (1997) The role of metallothionein in cadmium accumulation of Arctic char (Salvelinus alpinus) from high alpine lakes. Aquat Toxicol 38:47–66

    Article  CAS  Google Scholar 

  • Davaine P, Beall E (1997) Salmonid introductions into virgin ecosystems (Kerguelen Islands, Subantarctic): Stakes, results, prospects. Introduction de salmonidés en milieu vierge (Iles Kerguelen, Subantarctique): Enjeux, résultats, perspectives. Bull Fr Pêche Piscic 344(345):93–110

    Article  Google Scholar 

  • De Moreno JEA, Gerpe MS, Moreno VJ, Vodopivez C (1997) Heavy metals in Antarctic organisms. Polar Biol 17:131–140

    Article  Google Scholar 

  • Duhamel G, Gasco N, Davaine P (2005) Poissons des îles Kerguelen et Crozet. Guide Régional de l’Océan Austral. Muséum National d’Histoire Naturelle, Paris, p 419

    Google Scholar 

  • EFSA (2009) Scientific opinion of the panel on contaminants in the food chain on a request from the European Commission on cadmium in food. EFSA J 980:1–139

    Google Scholar 

  • Environnement Canada (1994) Cadmium and its compounds. Canadian Environmental Protection Act. Priority Substances List, Assessment Report. National Printers, Ottawa, pp 1–67

  • Evans MS, Muir D, Lockhart WL, Stern G, Ryan M, Roach P (2005) Persistent organic pollutants and metals in the freshwater biota of the Canadian Subarctic and Arctic: an overview. Sci Tot Environ 351–352:94–147

    Article  Google Scholar 

  • Farag AM, Stansbury MA, Hogstrand C, MacConnell E, Bergman HL (1995) The physiological impairment of free-ranging brown trout exposed to metals in the Clark Fork River, Montana. Can J Fish Aquat Sci 52:2038–2050

    Article  CAS  Google Scholar 

  • Hansen BH, Rømma S, Garmo ØA, Olsvik PA, Andersen RA (2006) Antioxidative stress proteins and their gene expression in brown trout (Salmo trutta) from three rivers with different heavy metal levels. Comp Biochem Physiol C 143:263–274

    CAS  Google Scholar 

  • Has-Schon E, Bogut I, Kralik G, Bogut S, Horvatic J, Cacic I (2008) Heavy metal concentration in fish tissues inhabiting waters of “Busko Blato” reservoir (Bosnia and Herzegovina). Environ Monit Assess 145:475

    Article  Google Scholar 

  • Hogstrand C, Haux C (1991) Binding and detoxification of heavy metals in lower vertebrates with reference to metallothionein. Comp Biochem Physiol C 100:137–141

    Article  CAS  PubMed  Google Scholar 

  • Honda K, Sahrul M, Hidaka H, Tatsukawa R (1983) Organ and tissue distribution of heavy metals, and their growth-related changes in antarctic fish, Pagothenia borchgrevinki. Agric Biol Chem 47:2521–2532

    CAS  Google Scholar 

  • JECFA (2003) Summary and conclusions of the sixty-first meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Rome, 10–19 June 2003

  • Jezierska B, Witeska M (2006) The metal uptake and accumulation in fish living in polluted waters. In: Twardowska I et al (eds) Soil and water pollution monitoring, protection and remediation. Springer, New York, pp 3–23

    Google Scholar 

  • Jöst C, Zauke GP (2008) Trace metal concentrations in Antarctic sea spiders (Pycnogonida, Pantopoda). Mar Pollut Bull 56:1396–1399

    Article  PubMed  Google Scholar 

  • Kahle J, Zauke GP (2002) Bioaccumulation of trace metals in the calanoid copepod Metridia gerlachei from the Weddell Sea (Antarctica). Sci Total Environ 295:1–16

    Article  CAS  PubMed  Google Scholar 

  • Kahle J, Zauke GP (2003) Trace metals in Antarctic copepods from the Weddell Sea (Antarctica). Chemosphere 51:409–417

    Article  CAS  PubMed  Google Scholar 

  • Keil S, De Broyer C, Zauke GP (2008) Significance and interspecific variability of accumulated trace metal concentrations in Antarctic benthic crustaceans. Int Rev Hydrobiol 93:106–126

    Article  CAS  Google Scholar 

  • Kito H, Tazawa T, Ose Y, Sato T, Ishikawa T (1982) Protection by metallothionein against cadmium toxicity. Comp Biochem Physiol C 73:135–139

    Article  CAS  PubMed  Google Scholar 

  • Lamas S, Fernández JA, Aboal JR, Carballeira A (2007) Testing the use of juvenile Salmo trutta L. as biomonitors of heavy metal pollution in freshwater. Chemosphere 67:221–228

    Article  CAS  PubMed  Google Scholar 

  • Lenihan HS, Oliver JS, Oakden JM, Stephenson MD (1990) Intense and localized benthic marine pollution around McMurdo Station, Antarctica. Mar Pollut Bull 21:422–430

    Article  CAS  Google Scholar 

  • Linde AR, Sánchez-Galán S, Izquierdo JI, Arribas P, Marañón E, García-Vázquez E (1998) Brown trout as biomonitor of heavy metal pollution: effect of age on the reliability of the assessment. Ecotoxicol Environ Saf 40:120–125

    Article  CAS  PubMed  Google Scholar 

  • Linde AR, Sánchez-Galán S, Klein D, García-Vázquez E, Summer KH (1999) Metallothionein and heavy metals in brown trout (Salmo trutta) and European eel (Anguilla anguilla): a comparative study. Ecotoxicol Environ Saf 44:168–173

    Article  CAS  PubMed  Google Scholar 

  • Linde AR, Klein D, Summer KH (2005) Phenomenon of hepatic overload of copper in Mugil cephalus: role of metallothionein and patterns of copper cellular distribution. Basic Clin Pharmacol Toxicol 97:230–235

    Article  CAS  PubMed  Google Scholar 

  • Marquez M, Vodopivez C, Casaux R, Curtosi A (1998) Metal (Fe, Zn, Mn and Cu) levels in the Antarctic fish Notothenia coriiceps. Polar Biol 20:404–408

    Article  Google Scholar 

  • Moore JN, Luoma SN, Peters D (1991) Downstream effects of mine effluent on an intermontane riparian system. Can J Fish Aquat Sci 48:222–232

    Article  Google Scholar 

  • Olsvik PA, Gundersen P, Andersen RA, Zachariassen KE (2001) Metal accumulation and metallothionein in brown trout, Salmo trutta, from two Norwegian rivers differently contaminated with Cd, Cu and Zn. Comp Biochem Physiol C 128:189–201

    CAS  Google Scholar 

  • Paris-Palacios S, Biagianti-Risbourg S (2006) Hepatocyte nuclear structure and subcellular distribution of copper in zebrafish Brachydanio rerio and roach Rutilus rutilus (Teleostei, Cyprinidae) exposed to copper sulphate. Aquat Toxicol 77:306–313

    Article  CAS  PubMed  Google Scholar 

  • Paris-Palacios S, Biagianti-Risbourg S, Vernet G (2000) Biochemical and (ultra)structural hepatic perturbations of Brachydanio rerio (Teleostei, Cyprinidae) exposed to two sublethal concentrations of copper sulfate. Aquat Toxicol 50:109–124

    Article  CAS  PubMed  Google Scholar 

  • Petri G, Zauke GP (1993) Trace metals in crustaceans in the Antarctic Ocean. Ambio 22:529–536

    Google Scholar 

  • Plancke J (1977) Phytoplankton biomass and productivity in the Subtropical convergence area and shelves of the western Indian subantarctic islands. In: Llano GA (ed) Adaptations within antarctic ecosystems. Proceedings of the third SCAR Symposium on Antarctic Biology, Washington, DC, pp 51–73

    Google Scholar 

  • Ravera O (1984) Cadmium in freshwater ecosystems. Cell Mol Life Sci 40:1–14

    Article  Google Scholar 

  • Ricoux C, Gasztowtt B (2005) Evaluation des risques sanitaires liés à l’exposition de forts consommateurs de produits de la pêche de rivière contaminés par des toxiques de l’environnement. Institut de Veille Sanitaire, France

  • Roch M, McCarter JA (1984) Hepatic metallothionein production and resistance to heavy metals by rainbow trout (Salmo gairdneri) exposed to an artificial mixture of zinc, copper and cadmium. Comp Biochem Physiol C 77:71–75

    Article  CAS  PubMed  Google Scholar 

  • Roesijadi G (1992) Metallothioneins in metal regulation and toxicity in aquatic animals. Aquat Toxicol 22:81–114

    Article  CAS  Google Scholar 

  • Sadegh Safarzadeh M, Bafghi MS, Moradkhani D, Ojaghi Ilkhchi M (2007) A review on hydrometallurgical extraction and recovery of cadmium from various resources. Miner Eng 20:211–220

    Article  CAS  Google Scholar 

  • Sanchez J, Marino N, Vaquero MC, Ansorena J, Legorburu I (1998) Metal pollution by old lead-zinc mines in Urumea River Valley (Basque country, Spain). Soil, biota and sediment. Water Air Soil Pollut 107:303–319

    Article  CAS  Google Scholar 

  • Sanchez W, Palluel O, Meunier L, Coquery M, Porcher J-M, Aït-Aïssa S (2005) Copper-induced oxidative stress in three-spined stickleback: relationship with hepatic metal levels. Environ Toxicol Pharmacol 19:177–183

    Article  CAS  Google Scholar 

  • Sanchez-Hernandez JC (2000) Trace element contamination in antarctic ecosystems. Rev Environ Contam Toxicol 166:83–127

    CAS  PubMed  Google Scholar 

  • Santovito G, Irato P, Piccinni E, Albergoni V (2000) Relationship between metallothionein and metal contents in red-blooded and white-blooded Antarctic teleosts. Polar Biol 23:383–391

    Article  Google Scholar 

  • Shinn C, Dauba F, Grenouillet G, Guenard G, Lek S (2009) Temporal variation of heavy metal contamination in fish of the river Lot in southern France. Ecotoxicol Environ Saf 72:1957–1965

    Article  CAS  PubMed  Google Scholar 

  • StatSoft France (1997) STATISTICA for Window. StatSoft France. 72, quai des Carrières. 94220 Charenton-le-Pont

  • Stubblefield WA, Steadman BL, La Point TW, Bergman HL (1999) Acclimation-induced changes in the toxicity of zinc and cadmium to rainbow trout. Environ Toxicol Chem 18:2875–2881

    Article  CAS  Google Scholar 

  • Szebedinszky C, McGeer JC, McDonald DG, Wood CM (2001) Effects of chronic Cd exposure via the diet or water on internal organ-specific distribution and subsequent gill Cd uptake kinetics in juvenile rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 20:597–607

    CAS  PubMed  Google Scholar 

  • Szefer P, Czarnowski W, Pempkowiak J, Holm E (1993) Mercury and major essential elements in seals, penguins, and other representative fauna of the Antarctic. Arch Environ Contam Toxicol 25:422–427

    Article  CAS  PubMed  Google Scholar 

  • Van den Brink NW (1997) Directed transport of volatile organochlorine pollutants to polar regions: the effect on the contamination pattern of Antarctic seabirds. Sci Total Environ 198:43–50

    Article  Google Scholar 

  • Vitek T, Spurny P, Mares J, Zikova A (2007) Heavy metal contamination of the Loucka River water ecosystem. Acta Vet Brno 76:149–154

    Article  CAS  Google Scholar 

  • Weber K, Goerke H (1996) Organochlorine compounds in fish off the Antarctic Peninsula. Chemosphere 33:377–392

    Article  CAS  Google Scholar 

  • Weber K, Goerke H (2003) Persistent organic pollutants (POPs) in antarctic fish: levels, patterns, changes. Chemosphere 53:667–678

    Article  CAS  PubMed  Google Scholar 

  • WHO (1982) Evaluation of certain food additives and contaminants (Twenty-sixth report of the Joint FAO/WHO Expert Committee on Food Additives). WHO Technical Report Series, No. 683

Download references

Acknowledgments

The present study was financially supported by the French Polar Institute Paul-Emile Victor (IMMUNOTOXKER program 409) and by the French National Research Agency (ANR—RISKER Program). We thank the French Polar Institute for its logistic support in Kerguelen Islands and the French Austral and Antarctic Territories Administration and the staff of the 55th mission in Kerguelen for their help in the field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Jaffal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaffal, A., Paris-Palacios, S., Jolly, S. et al. Cadmium and copper contents in a freshwater fish species (brook trout, Salvelinus fontinalis) from the subantarctic Kerguelen Islands. Polar Biol 34, 397–409 (2011). https://doi.org/10.1007/s00300-010-0895-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-010-0895-8

Keywords

Navigation