Skip to main content

Advertisement

Log in

Metabolic rate, genetic and microclimate variation among springtail populations from sub-Antarctic Marion Island

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Measurement of metabolic rates (made at 10°C) of individuals of the springtail Cryptopygus antarcticus travei from six geographically distinct populations on sub-Antarctic Marion Island were combined with mitochondrial DNA (COI) haplotype analysis to examine in parallel both physiological and genetic variation of distinct populations. We found evidence of genetic differentiation among populations and a general indication of long-term isolation with limited gene flow. While we found support for an overall pattern of metabolic rate structure among populations from different geographic locations on the island (mean rate = 0.0009–0.0029 μl O2 μg−1 h−1 for populations of a mean individual mass of 8–26 μg), we were unable to demonstrate a coherent common pattern between this and genetic variation. However, spatial structure in metabolic rate variation was strongly related to the extent of variability in microclimate among sites, and also showed some indication of a phylogeographic signal. Thus, over the relatively short timescale of Marion Island’s history (<1 million years), the periodic geographic barriers that have driven population differentiation from a molecular perspective may also have resulted in some physiological differentiation of populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams BJ, Bardgett RD, Ayres E, Wall DH, Aislabie J, Bamforth S, Bargagli R, Cary C, Cavacini P, Connell L, Convey P, Fell JW, Frati F, Hogg ID, Newsham KK, O’Donnell A, Russell N, Seppelt RD, Stevens MI (2006) Diversity and distribution of Victoria Land biota. Soil Biol Biochem 38:3003–3018

    Article  CAS  Google Scholar 

  • Addo-Bediako A, Chown SL, Gaston KJ (2002) Metabolic cold adaptation in insects: a large scale perspective. Funct Ecol 16:332–338

    Article  Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, USA

    Google Scholar 

  • Block W (1990) Cold tolerance of insects and other arthropods. Philos Trans Roy Soc B 326:613–633

    Article  Google Scholar 

  • Block W, Tilbrook PJ (1975) Respiration studies on the Antarctic collembolan Cryptopygus antarcticus. Oikos 26:15–25

    Article  Google Scholar 

  • Block W, Young SR (1978) Metabolic adaptations of Antarctic terrestrial micro-arthropods. Comp Biochem Phys A 61:363–368

    Article  Google Scholar 

  • Boelhouwers JC, Holness S, Sumner P (2003) The maritime sub-Antarctic: a distinct periglacial environment. Geomorphology 52:39–55

    Article  Google Scholar 

  • Boelhouwers JC, Meiklejohn KI, Holness SD, Hedding DW (2008) Geology, geomorphology and climate change. In: Chown SL, Froneman PW (eds) The Prince Edward Islands, Land-sea interactions in a changing ecosystem. African Sunmedia, South Africa, pp 65–96

    Google Scholar 

  • Chown SL (1997) Thermal sensitivity of oxygen uptake of Diptera from sub-Antarctic South Georgia and Marion Island. Polar Biol 17:81–86

    Article  Google Scholar 

  • Chown SL, Convey P (2007) Spatial and temporal variability across life’s hierarchies in the terrestrial Antarctic. Philos Trans Roy Soc B 362:2307–2331

    Article  Google Scholar 

  • Chown SL, Froneman PW (2008) The Prince Edward Islands. Land, sea interactions in a changing ecosystem. African SunMedia, South Africa

    Google Scholar 

  • Chown SL, van der Merwe M, Smith VR (1997) The influence of habitat and altitude on oxygen uptake in sub-antarctic weevils. Physiol Zool 70:116–124

    CAS  PubMed  Google Scholar 

  • Clarke A (1993) Seasonal acclimation and latitudinal compensation in metabolism: do they exist? Funct Ecol 7:139–149

    Article  Google Scholar 

  • Clarke A (1998) Temperature and energetics: a review of cold ocean physiology. In: Pörtner HO, Playle RC (eds) Cold ocean physiology. Society for Experimental Biology Seminar, Series no. 66, pp 3–30

  • Clement MD, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    Article  CAS  PubMed  Google Scholar 

  • Convey P (1996a) The influence of environmental characteristics on life history attributes of Antarctic terrestrial biota. Biol Rev 71:191–225

    Article  Google Scholar 

  • Convey P (1996b) Overwintering strategies of terrestrial invertebrates in Antarctica—the significance of flexibility in extremely seasonal environments. Eur J Entomol 93:489–505

    Google Scholar 

  • Convey P (1996c) Reproduction of Antarctic flowering plants. Antarct Sci 8:127–134

    Google Scholar 

  • Convey P (1998) Latitudinal variation in allocation to reproduction by the Antarctic oribatid mite, Alaskozetes antarcticus. Appl Soil Ecol 9:93–99

    Article  Google Scholar 

  • Crandall KA, Templeton AR (1993) Empirical tests of some predictions from coalescent theory. Genetics 134:619–633

    Google Scholar 

  • Davey MC, Rothery P (1996) Seasonal variation in respiratory and photosynthetic parameters in three mosses from the maritime Antarctic. Ann Bot 78:719–728

    Article  Google Scholar 

  • Deere JA, Chown SL (2006) Testing the beneficial acclimation hypothesis and its alternatives for locomoter performance. Am Nat 168:630–644

    Article  PubMed  Google Scholar 

  • Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293:2248–2251

    Article  CAS  PubMed  Google Scholar 

  • Hawes TC, Worland MR, Bale JS, Convey P (2008a) Rafting in Antarctic Collembola. J Zool 274:44–50

    Google Scholar 

  • Hawes TC, Bale JS, Worland MR, Convey P (2008b) Trade-offs between microhabitat selection and physiological plasticity in the Antarctic springtail, Cryptopygus antarcticus (Willem). Polar Biol 31:68–689

    Google Scholar 

  • Hugo EA, McGeoch MA, Marshall DJ, Chown SL (2004) Fine scale variation in microarthropod communities inhabiting the keystone species Azorella selago on Marion Island. Polar Biol 27:466–473

    Article  Google Scholar 

  • Joly S, Stevens MI, Jansen van Vuuren B (2007) Haplotype networks can be misleading in the presence of missing data. Syst Biol 56:857–862

    Article  PubMed  Google Scholar 

  • Klok CJ, Chown SL (2003) Resistance to temperature extremes in sub-Antarctic weevils: interspecific variation, population differentiation and acclimation. Biol J Linn Soc 78:401–414

    Article  Google Scholar 

  • Klok CJ, Chown SL (2005) Inertia in physiological traits: Embyonopsis halticella caterpillars (Yponomeutidae) across the Antarctic Polar Frontal Zone. J Insect Physiol 51:87–97

    Article  CAS  PubMed  Google Scholar 

  • Kozłowski J, Czarnoleski M, Dańko M (2004) Can optimal resource allocation models explain why ectotherms grow larger in cold? Integr Comp Biol 44:480–493

    Article  Google Scholar 

  • Lardies MA, Bozinovic F (2008) Genetic variation for plasticity in physiological and life-history traits among populations of an invasive species, the terrestrial isopod Porcellio laevis. Evol Ecol Res 10:747–762

    Google Scholar 

  • Lardies MA, Catalan TP, Bozinovic F (2004) Metabolism and life-history correlates in a lowland and highland population of a terrestrial isopod. Can J Zool 82:677–687

    Article  Google Scholar 

  • Makarieva AM, Gorshkov VG, Li B-L (2005) Biochemical universality of living matter and its metabolic implications. Funct Ecol 19:547–557

    Article  Google Scholar 

  • McDougall I, Verwoerd W, Chevallier L (2001) K-Ar geochronology of Marion Island, Southern Ocean. Geol Mag 138:1–17

    Article  CAS  Google Scholar 

  • McGaughran A, Hogg ID, Stevens MI (2008) Patterns of population genetic structure for springtails and mites in southern Victoria Land, Antarctica. Mol Phylogenet Evol 46:606–618

    Article  CAS  PubMed  Google Scholar 

  • McGaughran A, Redding GP, Stevens MI, Convey P (2009) Temporal metabolic rate variation in a continental Antarctic springtail. J Insect Physiol 55:129–134

    Article  CAS  PubMed  Google Scholar 

  • McGeoch MA, Le Roux PC, Hugo EA, Nyakatya MJ (2008) Spatial variation in the terrestrial biotic system. In: Chown SL, Froneman PW (eds) The Prince Edward Islands. Land-Sea interactions in a changing ecosystem. African SunMedia, South Africa, pp 245–276

    Google Scholar 

  • Mitton JB, Carey C, Kocher TD (1986) The relation of enzyme heterozygosity to standard and active oxygen consumption and body size of tiger salamanders, Ambystoma tigrinum. Physiol Zool 59:574–582

    CAS  Google Scholar 

  • Mortimer E, Jansen van Vuuren B (2006) Phylogeography of Eupodes minutus (Acari: Prostigmata) on sub-Antarctic Marion Island reflects the impact of historical events. Polar Biol 30:471–476

    Article  Google Scholar 

  • Myburgh M, Chown SL, Daniels SR, Jansen van Vuuren B (2007) Population structure, propagule pressure, and conservation biogeography in the sub-Antarctic: lessons from indigenous and invasive springtails. Divers Distrib 13:143–154

    Article  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, USA

    Google Scholar 

  • Nespolo RF, Lardies MA, Bozinovic F (2003) Intrapopulational variation in the standard metabolic rate of insects: repeatability, thermal dependence and sensitivity (Q10) of oxygen consumption in a cricket. J Exp Biol 206:4309–4315

    Article  CAS  PubMed  Google Scholar 

  • Nyakatya MJ, McGeoch MA (2008) Temperature variation across Marion Island associated with a keystone plant species (Azorella selago Hook. (Apiaceae)). Polar Biol 31:139–151

    Article  Google Scholar 

  • Peck LS, Convey P, Barnes DKA (2006) Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Biol Rev 81:75–109

    Article  PubMed  Google Scholar 

  • Pujolar JM, Maes GE, Vancoillie C, Volckaert FAM (2005) Growth rate correlates to individual heterozygosity in the European eel, Anguilla anguilla L. Evolution 59:189–199

    CAS  PubMed  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin ver. 2.000: a software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland

    Google Scholar 

  • Sinclair BJ, Addo-Bediako A, Chown SL (2003) Climatic variability and the evolution of insect freeze tolerance. Biol Rev 78:181–195

    Article  PubMed  Google Scholar 

  • Slatkin M, Hudson RR (1991) Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129:555–562

    CAS  PubMed  Google Scholar 

  • Sømme L, Ring RA, Block W, Worland MR (1989) Respiratory metabolism of Hydromedion sparsutum and Perimylops antarcticus (Col., Perimylopidae) from South Georgia. Polar Biol 10:135–139

    Google Scholar 

  • Stevens MI, Greenslade P, Hogg ID, Sunnucks P (2006) Examining Southern Hemisphere springtails: could any have survived glaciation of Antarctica? Mol Biol Evol 23:874–882

    Article  CAS  PubMed  Google Scholar 

  • Stevens MI, Frati F, McGaughran A, Spinsanti G, Hogg ID (2007) Phylogeographic structure suggests multiple glacial refugia in northern Victoria Land for the endemic Antarctic springtail Desoria klovstadi (Collembola, Isotomidae). Zool Scr 36:201–212

    Article  Google Scholar 

  • Strømme JA, Ngari TW, Zachariassen KE (1986) Physiological adaptations in Coleoptera on Spitzbergen. Polar Res 4:199–204

    Article  Google Scholar 

  • Sunnucks P, Hales DF (1996) Numerous transposed sequences of mitochondrial cytochrome oxidase I–II in aphids of the genus Sitobion (Hemiptera: Aphididae). Mol Biol Evol 13:510–524

    CAS  PubMed  Google Scholar 

  • Teska WR, Smith MH, Novak JM (1990) Food quality, heterozygosity, and fitness correlates in Peromyscus polionotus. Evolution 44:1318–1325

    Article  Google Scholar 

  • Worland MR, Lukesova A (2001) The application of differential scanning calorimetry and ice nucleation spectrometry to ecophysiological studies of algae. Nova Hedwigia 123:571–583

    Google Scholar 

Download references

Acknowledgments

We thank T. Hawes and two anonymous reviewers for constructive comments on an earlier version of the manuscript. We thank members of the Centre for Invasion Biology, University of Stellenbosch, and colleagues on Marion Island, particularly Valdon Smith, Charlene Scheepers and Elrike Marais. AM was supported by a New Zealand Tertiary Education Commission Top Achievers Doctoral Scholarship. This paper forms a contribution to the SCAR EBA research programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela McGaughran.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1 (DOC 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGaughran, A., Convey, P., Stevens, M.I. et al. Metabolic rate, genetic and microclimate variation among springtail populations from sub-Antarctic Marion Island. Polar Biol 33, 909–918 (2010). https://doi.org/10.1007/s00300-010-0767-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-010-0767-2

Keywords

Navigation