Skip to main content

Advertisement

Log in

Fungal community associated with marine macroalgae from Antarctica

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Filamentous fungi and yeasts associated with the marine algae Adenocystis utricularis, Desmarestia anceps, and Palmaria decipiens from Antarctica were studied. A total of 75 fungal isolates, represented by 27 filamentous fungi and 48 yeasts, were isolated from the three algal species and identified by morphological, physiological, and sequence analyses of the internal transcribed spacer region and D1/D2 variable domains of the large-subunit rRNA gene. The filamentous fungi and yeasts obtained were identified as belonging to the genera Geomyces, Antarctomyces, Oidiodendron, Penicillium, Phaeosphaeria, Aureobasidium, Cryptococcus, Leucosporidium, Metschnikowia, and Rhodotorula. The prevalent species were the filamentous fungus Geomyces pannorum and the yeast Metschnikowia australis. Two fungal species isolated in our study, Antarctomyces psychrotrophicus and M. australis, are endemic to Antarctica. This work is the first study of fungi associated with Antarctic marine macroalgae, and contributes to the taxonomy and ecology of the marine fungi living in polar environments. These fungal species may have an important role in the ecosystem and in organic matter recycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altuschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  Google Scholar 

  • Arenz BE, Held BW, Jurgens JA, Farrell RL, Blanchette RA (2006) Fungal diversity in soils and historic wood from the Ross Sea Region of Antarctica. Soil Biol Biochem 38:3057–3064. doi:10.1016/j.soilbio.2006.01.016

    Article  CAS  Google Scholar 

  • Bridge PD, Newsham KK (2009) Soil fungal community composition at Mars Oasis, a southern maritime Antarctic site, assessed by PCR amplification and cloning. Fungal Ecol 2:66–74. doi:1016/j.funeco.2008.10.008

    Article  Google Scholar 

  • Bugni TS, Ireland CM (2004) Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Nat Prod Rep 21:143–163. doi:10.1039/b301926h

    Article  CAS  PubMed  Google Scholar 

  • Charpy-Roubaud C, Sourina A (1990) The comparative estimation of phytoplanktonic, microphytobenthic and macrophytobenthic primary production in the oceans. Mar Microb Food Webs 4:31–57

    Google Scholar 

  • Donachie SP, Zdanowski MK (1998) Potential digestive function of bacteria in krill Euphausia superba stomach. Aquat Microb Ecol 14:129–136

    Article  Google Scholar 

  • Fell JW, Hunter IL (1968) Isolation of heterothallic yeast strains of Metschnikowia Kamienski and their mating reactions with Chlamydozyma Wickerham spp. Antonie van Leeuwenhoek 34:365–376. doi:10.1007/BF02046459

    Article  CAS  PubMed  Google Scholar 

  • Fell JW, Statzel A, Hunter IL, Phaff HJ (1969) Leucosporidium gen. nov. The heterobasidiomycetous stage of several yeasts of the genus Candida. Antonie van Leeuwenhoek 35:433–462

    Article  CAS  PubMed  Google Scholar 

  • Hawksworth DL (2004) Fungal diversity and its implications for genetic resource collections. Stud Mycol 50:9–18

    Google Scholar 

  • Höller U, König GM, Wright AD (1999) Three new metabolites from marine-derived fungi of the genera Coniothyrium and Microsphaeropsis. J Nat Prod 62:114–118. doi:10.1021/np980341e

    Article  PubMed  Google Scholar 

  • Jones EBG, Byrne PJ (1976) Physiology of the higher marine fungi. In: Jones EBG (ed) Recent advances in aquatic mycology. Wiley, New York, pp 1–51

    Google Scholar 

  • Kirk PM, Cannon PF, David JC, Stalpers JA (2001) Ainsworth & Bisby’s dictionary of the fungi, 19th edn. CAB International, Wallingford

    Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1979) Marine mycology. Academic Press Inc., New York, pp 54–69

    Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (1991) Illustrated key to the filamentous higher marine fungi. Bot Marina 34:1–61

    Article  Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (2003) Marine ascomycetes from algae and animal hosts. Bot Marina 46:285–306

    Article  Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B, Eriksson OE (1998) Fungi on Juncus roemerianus. 11. More new ascomycetes. Can J Bot 76:467–477

    Article  Google Scholar 

  • Kurtzman CP, Fell JW (1998) The yeast: a taxonomic study, 4th edn. Elsevier, Amsterdam

    Google Scholar 

  • Kuthubutheen AJ, Pugh GJ (1979) Effects of temperature and fungicides on Chrysosporium pannorum (Link) Hughes. Antonie van Leeuwenhoek 45:65–79. doi:10.1007/BF00400780

    Article  CAS  PubMed  Google Scholar 

  • Lachance MA, Bowles JM, Starmer WT, Barker JSF (1999) Kodamaea kakaduensis and Candida tolerans, two new ascomycetous yeasts species from Australian Hibiscus flowers. Can J Microbiol 45:172–177. doi:10.1139/cjm-45-2-172

    Article  CAS  PubMed  Google Scholar 

  • Lachance MA, Daniel HM, Meyer W, Prasad GS, Gautam SP, Boundy-Mills K (2003) The D1/D2 domain of the large-subunit rDNA of the yeast species Clavispora lusitaniae is usually polymorphic. FEMS Yeast Res 4:253–259. doi:10.1016/S1567-1356(03)00113-2

    Article  CAS  PubMed  Google Scholar 

  • Mendonça-Hagler LC, Hagler AN, Phaff HJ, Tredick J (1985) DNA relatedness among aquatic yeasts of the genus Metschnikowia and proposal of the species Metschnikowia australis com. nov. Can J Microbiol 31:905–909. doi:10.1139/m85-170

    Article  PubMed  Google Scholar 

  • Mercantini R, Marsella R, Cervellati MC (1989) Kerationphilic fungi isolated from Antarctic soil. Mycopathologia 106:47–52. doi:10.1007/BF00436926

    Article  CAS  PubMed  Google Scholar 

  • Nedzarek A, Rakusa-Suszczewski S (2004) Decomposition of macroalgae and the release of nutrient in Admiralty Bay, King George Island, Antarctica. Polar Biosci 17:16–35

    Google Scholar 

  • Poole N, Price P (1971) The occurrence of Chrysosporium pannorum in soils receiving incremental cellulose. Soil Biol Biochem 3:161–166

    Article  Google Scholar 

  • Rollo F, Sassaroli S, Ubaldi M (1995) Molecular phylogeny of the fungi of the Iceman’s grass clothing. Curr Genet 28:289–297

    Article  CAS  PubMed  Google Scholar 

  • Rosa LH, Vaz ABM, Caligiorne RB, Campolina S, Rosa CA (2009) Endophytic fungi associated with the Antarctic Grass Deschampsia antarctica Desv. (Poaceae). Polar Biol 32:161–167. doi:10.1007/s00300-008-0515-z

    Article  Google Scholar 

  • Sampaio JP, Gadanho M, Bauer R, Weib M (2003) Taxonomic studies in the Microbotryomycetidae: Leucosporidium golubevii sp. nov., Leucosporidiella gen. nov. and the new orders Leucosporidiales and Sporidiobolales. Mycol Progress 2:53–68

    Article  Google Scholar 

  • Stanley SJ (1992) Observation on the seasonal occurrence of marine endophytic and parasitic fungi. Can J Bot 70:2089–2096. doi:10.1139/b92-259

    Article  Google Scholar 

  • Stchigel AM, Cano J, MacCormack CW (2001) Antarctomyces psychrotrophicus gen. et sp. nov., a new ascomycete from Antarctica. Mycol Res 105:377–382. doi:10.1017/S0953756201003379

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi:10.1093/molbev/msm092

    Article  CAS  PubMed  Google Scholar 

  • Taylor DL, Herriot IC, Long J, O’Neill K (2007) TOPO TA is A-OK: a test of phylogenetic bias in fungal environmental clone library construction. Environ Microbiol 9:1329–1334

    Article  CAS  PubMed  Google Scholar 

  • Uspon R, Newsham KK, Bridge PD, Pearce DA, Read DJ (2009) Taxonomic affinities of dark septate root endophytes of Colobanthus quitensis and Deschampsia antarctica, the two native Antarctic vascular plant species. Fungal Ecol. doi:10.1016/j.funeco.2009.02.004

  • White TJ, Bruns TD, Lee SB (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand J, Sninsky J, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press Inc., New York, pp 315–322

    Google Scholar 

  • Wiencke C, Clayton MN, Gomez I, Iken K, Luder UH, Amsler CB, Karsten U, Hanelt D, Bischof K, Dunton K (2007) Life strategy, ecophysiology and ecology of seaweeds in polar waters. Rev Environ Sci Biotechnol 6:96–126. doi:10.1007/s11157-006-9106-z

    Article  Google Scholar 

  • Yarrow D (1998) Methods for the isolation, maintenance and identification of yeasts. In: Kurtzman CP, Fell JW (eds) The yeasts: a taxonomic study. Elsevier, Amsterdam, pp 77–105

    Chapter  Google Scholar 

  • Zuccaro A, Mitchell JI (2005) Fungal communities of seaweeds. In: Dighton J, White JF, Oudemans P (eds) The fungal community, 3rd edn. CRC Press, New York, pp 533–579

    Google Scholar 

  • Zuccaro A, Schulz B, Mitchell JI (2003) Molecular detection of ascomycetes associated with Fucus serratus. Mycol Res 107:1451–1466. doi:10.1017/S0953756203008657

    Article  CAS  PubMed  Google Scholar 

  • Zuccaro A, Schoch CL, Spatafora JW, Kohlmeyer J, Draeger S, Mitchell JI (2008) Detection and identification of fungi intimately associated with the brown seaweed Fucus serratus. Appl Environ Microbiol 74:931–941. doi:10.1128/AEM.01158-07

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was made possible with financial and logistic support from the Brazilian Antarctic Programme (PROANTAR). It is part of the API activity 403 “MIDIAPI Microbial Diversity of Terrestrial and Maritime ecosystems in Antarctic Peninsula” under the overall coordination of Dr. Vivian H. Pellizari, and contributes to the umbrella IPY activities MERGE (Microbiological and Ecological Responses to Global Environmental Changes in Polar Regions), CAML (Census of Antarctic Marine Life), and SCARMarBIN (SCAR-Marine Biodiversity Information Network). The work was financially supported by the Fundação of Amparo, the Pesquisa of the Minas Gerais (FAPEMIG) and Conselho Nacional of Desenvolvimento Científico and Tecnológico (CNPq). We thank an anonymous reviewer of Polar Biology journal for helpful comments to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz H. Rosa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loque, C.P., Medeiros, A.O., Pellizzari, F.M. et al. Fungal community associated with marine macroalgae from Antarctica. Polar Biol 33, 641–648 (2010). https://doi.org/10.1007/s00300-009-0740-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-009-0740-0

Keywords

Navigation