Polar Biology

, Volume 33, Issue 4, pp 543–556 | Cite as

Acquisition of freeze protection in a sea-ice crustacean through horizontal gene transfer?

  • Rainer KikoEmail author
Original Paper


Sea ice is permeated by small brine channels, which are characterised by sub-zero temperatures and varying salinities. Despite sometimes extreme conditions a diverse fauna and flora thrives within the brine channels. The dominant calanoid copepods of Antarctic sea ice are Stephos longipes and Paralabidocera antarctica. Here, I report for the first time thermal hysteresis (TH) in the haemolymph of a crustacean, S. longipes, whereas P. antarctica has no such activity. TH, the non-colligative prevention of ice growth, seems to enable S. longipes to exploit all available microhabitats within sea ice, especially the surface layer, in which strong temperature fluctuations can occur. In contrast, P. antarctica only thrives within the lowermost centimetres of sea ice, where temperature fluctuations are moderate. S. longipes possesses two isoforms of a protein with TH activity. A high homology to a group of (putative) antifreeze proteins from diatoms, bacteria and a snow mold and, in contrast, no homologs in any metazoan lineage suggest that this protein was obtained through horizontal gene transfer (HGT). Further analysis of available sequence data from sea-ice organisms indicates that these antifreeze proteins were probably transferred horizontally several times. Temperature and salinity fluctuations within the brine channel system are proposed to provide “natural transformation” conditions enabling HGT and thus making this habitat a potential “hot spot” for HGT.


Sympagic meiofauna Antifreeze protein Ice binding protein In situ hybridization Stephos longipes Paralabidocera antarctica Lateral gene transfer 



Amino acid


Antifreeze protein




Eukaryotic elongation factor 1 alpha


Filtered seawater


Horizontal gene transfer


Heat shock protein 70


Recrystallization inhibition


Ribulose-1,5-bisphosphate carboxylase/oxygenase


Suppression subtractive hybridization


Thermal hysteresis



Thanks are first of all due to I. Werner for her support during all phases of this study. I am grateful to captains, crews and colleagues (especially S. Schnack-Schiel, H. Schünemann and M. Kramer) for their help during the expeditions with R/V Polarstern. I furthermore thank H.-O. Pörtner for the opportunity to work in his labs and especially M. Lucassen for providing excellent facilities and tips for molecular biological work. U. John is thanked for help with sequencing parts of the cDNA library, G. Hemmrich for help with clustering the ESTs, T. C. G. Bosch for providing the vector and bacteria for the recombinant expression experiment and G. Dieckmann and C. Uhlig for diatom cultures and cDNA. I would furthermore like to thank I. Werner, M. Kramer, S. Siebert and M. Lucassen for critically reading the manuscript and three anonymous reviewers for excellent comments.

Supplementary material

300_2009_732_MOESM1_ESM.pdf (85 kb)
Supplementary material S1 (PDF 86 kb)
300_2009_732_MOESM2_ESM.pdf (61 kb)
Supplementary material S2 (PDF 62 kb)


  1. Aarset AV (1991) The ecophysiology of under-ice fauna. Polar Res 10:309–324CrossRefGoogle Scholar
  2. Ackley SF, Sullivan CW (1994) Physical controls on the development and characteristics of Antarctic sea ice biological communities—review and synthesis. Deep-Sea Res I 41:1583–1604CrossRefGoogle Scholar
  3. Andersson JO (2005) Lateral gene transfer in eukaryotes. Cell Mol Life Sci 62:1182–1197CrossRefPubMedGoogle Scholar
  4. Arndt CE, Swadling KM (2006) Crustacea in Arctic and Antarctic sea ice: distribution, diet and life history strategies. Adv Mar Biol 51:197–315CrossRefPubMedGoogle Scholar
  5. Arrigo KR, Worthen DL, Lizotte MP, Dixon P, Dieckmann G (1997) Primary production in Antarctic sea ice. Science 276:394–397CrossRefPubMedGoogle Scholar
  6. Assur A (1958) Composition of sea ice and its tensile strength. Nat Res Council Publ 598:106–138Google Scholar
  7. Augustin R, Franke A, Khalturin K, Kiko R, Siebert S, Hemmrich G, Bosch TCG (2006) Dickkopf related genes are components of the positional value gradient in Hydra. Dev Biol 296:62–70CrossRefPubMedGoogle Scholar
  8. Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795CrossRefPubMedGoogle Scholar
  9. Bezier A, Annaheim M, Herbiniere J, Wetterwald C, Gyapay G, Bernard-Samain S, Wincker P, Roditi I, Heller M, Belghazi M, Pfister-Wilhem R, Periquet G, Dupuy C, Huguet E, Volkoff A-N, Lanzrein B, Drezen J-M (2009) Polydnaviruses of braconid wasps derive from an ancestral nudivirus. Science 323:926–930CrossRefPubMedGoogle Scholar
  10. Cavalieri DJ, Parkinson CL, Vinnikov KY (2003) 30-Year satellite record reveals contrasting Arctic and Antarctic decadal sea ice variability. Geophys Res Lett 30:1970. doi: 10.1029/2003GL018031 CrossRefGoogle Scholar
  11. Chen L, DeVries AL, Cheng CC (1997) Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod. Proc Natl Acad Sci USA 94:3817–3822CrossRefPubMedGoogle Scholar
  12. Cheng CC (1998) Evolution of the diverse antifreeze proteins. Curr Opin Genet Dev 8:715–720CrossRefPubMedGoogle Scholar
  13. Dahlberg C, Bergstrom M, Hermansson M (1998) In situ detection of high levels of horizontal plasmid transfer in marine bacterial communities. Appl Environ Microbiol 64:2670–2675PubMedGoogle Scholar
  14. DeVries AL (1982) Biological antifreeze agents in coldwater fishes. Comp Biochem Physiol A 73:627–640CrossRefGoogle Scholar
  15. DeVries AL (1986) Antifreeze glycopeptides and peptides: Interactions with ice and water. Methods Enzymol 127:293–303CrossRefPubMedGoogle Scholar
  16. Diatchenko L, Lau Y-FC, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93:6025–6030CrossRefPubMedGoogle Scholar
  17. Duman JG (2001) Antifreeze and ice nucleator proteins in terrestrial arthropods. Annu Rev Physiol 63:327–357CrossRefPubMedGoogle Scholar
  18. Duman JG, Olsen TM (1993) Thermal hysteresis protein activity in bacteria, fungi and phylogenetically diverse plants. Cryobiology 30:322–328CrossRefGoogle Scholar
  19. Dunning Hotopp JC, Clark ME, Oliveira DSCG, Foster JM, Fischer P, Munoz Torres MC, Giebel JD, Kumar N, Ishmael N, Wang S, Ingram J, Nene RV, Shepard J, Tomkins J, Richards S, Spiro DJ, Ghedin E, Slatko BE, Tettelin H, Werren JH (2007) Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317:1753–1756CrossRefGoogle Scholar
  20. Eck RV, Dayhoff MO (1966) Atlas of protein sequence and structure. National Biomedical Research Foundation, Silver Springs, MarylandGoogle Scholar
  21. Eicken H (1992) The role of sea ice in structuring Antarctic ecosystems. Polar Biol 12:3–13CrossRefGoogle Scholar
  22. Enevoldsen LT, Heiner I, DeVries AL, Steffensen JF (2003) Does fish from the Disko Bay area of Greenland possess antifreeze proteins during the summer? Polar Biol 26:365–370Google Scholar
  23. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  24. Fraune S, Bosch TCG (2007) Long-term maintenance of species-specific bacterial microbiota in the basal metazoan Hydra. Proc Natl Acad Sci USA 104:13146–13151CrossRefPubMedGoogle Scholar
  25. Garrison DL, Buck KR (1987) Algal assemblages in Antarctic pack ice and in ice-edge plankton. J Phycol 23:564–572Google Scholar
  26. Garrison DL, Close AR, Reimnitz E (1989) Algae concentrated by frazil ice: evidence from laboratory experiments and field measurements. Antarct Sci 1:313–316CrossRefGoogle Scholar
  27. Gladyshev EA, Meselson M, Arkhipova IA (2008) Massive horizontal gene transfer in bdelloid rotifers. Science 320:1210–1213CrossRefPubMedGoogle Scholar
  28. Graham LA, Lougheed SC, Ewart KV, Davies PL (2008) Lateral transfer of a lectin-like antifreeze protein gene in fishes. PLoS ONE 3:e2616CrossRefPubMedGoogle Scholar
  29. Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283:1476–1481CrossRefPubMedGoogle Scholar
  30. Guglielmo L, Zagami L, Saggiomo V, Catalano G, Granata A (2007) Copepods in spring annual sea ice at Terra Nova Bay (Ross Sea, Antarctica). Polar Biol 30:747–758CrossRefGoogle Scholar
  31. Günther S, George KH, Gleitz M (1999) High sympagic metazoan abundance in platelet layers at Drescher Inlet, Weddell Sea, Antarctica. Polar Biol 22:82–89CrossRefGoogle Scholar
  32. Habetha M, Bosch TCG (2005) Symbiotic Hydra express a plant-like peroxidase gene during oogenesis. J Exp Biol 208:2157–2164CrossRefPubMedGoogle Scholar
  33. Hargens AR, Shabica SV (1973) Protection against lethal freezing temperatures by mucus in an Antarctic limpet. Cryobiology 10:331–337CrossRefPubMedGoogle Scholar
  34. Horner R, Ackley SF, Dieckmann GS, Gulliksen B, Hoshiai T, Legendre L, Melnikov IA, Reeburgh WS, Spindler M, Sullivan CW (1992) Ecology of sea ice biota. 1. Habitat, terminology, and methodology. Polar Biol 12:417–427CrossRefGoogle Scholar
  35. Hoshino T, Kiriaki M, Ohgiya S, Fujiwara M, Kondo H, Nishimiya Y, Yumoto I, Tsuda S (2003) Antifreeze proteins from snow mold fungi. Can J Bot 81:1175–1181CrossRefGoogle Scholar
  36. Janech MG, Krell A, Mock T, Kang JS, Raymond JA (2006) Ice-binding proteins from sea ice diatoms (Bacillariophyceae). J Phycol 42:410–416CrossRefGoogle Scholar
  37. Jin Y, DeVries AL (2006) Antifreeze glycoprotein levels in Antarctic notothenioid fishes inhabiting different thermal environments and the effect of warm acclimation. Comp Biochem Physiol B 144:290–300CrossRefPubMedGoogle Scholar
  38. Kattner G, Thomas DN, Haas C, Kennedy H, Dieckmann GS (2004) Surface ice and gap layers in Antarctic sea ice: highly productive habitats. Mar Ecol Prog Ser 277:1–12CrossRefGoogle Scholar
  39. Keeling PJ, Doolittle WF (1995) Archaea: narrowing the gap between prokaryotes and eukaryotes. Proc Natl Acad Sci USA 92:5761–5764CrossRefPubMedGoogle Scholar
  40. Kiko R, Michels J, Mizdalski E, Schnack-Schiel SB, Werner I (2008a) Living conditions, abundance and composition of the metazoan fauna in surface and sub-ice layers in pack ice of the western Weddell Sea during late spring. Deep-Sea Res II 55:1000–1014CrossRefGoogle Scholar
  41. Kiko R, Kramer M, Spindler M, Wägele H (2008b) Tergipes antarcticus (Gastropoda, Nudibranchia): distribution, life cycle, morphology, anatomy and adaptation of the first mollusc known to live in Antarctic sea ice. Polar Biol 31:1383–1395CrossRefGoogle Scholar
  42. Kiko R, Werner I, Wittmann A (2008c) Osmotic and ionic regulation in response to salinity variations and cold resistance in the Arctic under-ice amphipod Apherusa glacialis. Polar Biol 32:393–398CrossRefGoogle Scholar
  43. Kondo N, Nikoh N, Ijichi N, Shimada M, Fukatsu T (2002) Genome fragment of Wolbachia endosymbiont transferred to X chromosome of host insect. Proc Natl Acad Sci USA 99:14280–14285CrossRefPubMedGoogle Scholar
  44. Krembs C, Gradinger R, Spindler M (2000) Implications of brine channel geometry and surface area for the interaction of sympagic organisms in Arctic sea ice. J Exp Mar Biol Ecol 243:55–80CrossRefGoogle Scholar
  45. Krembs C, Eicken H, Junge K, Deming JW (2002) High concentrations of exopolymeric substances in Arctic winter sea ice: implication for the polar ocean carbon cycle and cryoprotection of diatoms. Deep-Sea Res I 49:2163–2181Google Scholar
  46. Kurbjeweit F, Gradinger R, Weissenberger J (1993) The life cycle of Stephos longipes—an example for cryopelagic coupling in the Weddell Sea (Antarctica). Mar Ecol Prog Ser 98:255–262CrossRefGoogle Scholar
  47. Levy SB, Marshall B (2004) Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 10:S122–S129CrossRefPubMedGoogle Scholar
  48. Love GD, Grosjean E, Stalvies C, Fike DA, Grotzinger JP, Bradley AS, Kelly AE, Bhatia M, Meredith W, Snape CA, Bowring SA, Condon DJ, Summons RE (2009) Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature 457:718–721CrossRefPubMedGoogle Scholar
  49. Mallet F, Bouton O, Prudhomme S, Cheynet V, Oriol G, Bonnaud B, Lucotte G, Duret L, Mandrand B (2004) The endogenous retroviral locus ERVWE1 is a bona fide gene involved in hominoid placental physiology. Proc Natl Acad Sci USA 101:1731–1736CrossRefPubMedGoogle Scholar
  50. Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New HavenGoogle Scholar
  51. Mark FC, Lucassen M, Pörtner H–O (2006) Thermal sensitivity of uncoupling proteins in polar and temperate fish. Comp Biochem Physiol D1:365–374Google Scholar
  52. Martin W, Stoebe B, Goremykin V, Hansmann S, Hasegawa M, Kowallik KV (1998) Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393:162–165CrossRefPubMedGoogle Scholar
  53. Massom RA, Eicken H, Haas C, Jeffries MO, Drinkwater MR, Sturm M, Worby AP, Wu X, Lyle VI, Ushio S, Morris K, Reid PA, Warren SG, Allison I (2001) Snow on Antarctic sea ice. Rev Geophys 39:413–445CrossRefGoogle Scholar
  54. McKenzie Bird D, Koltai H (2000) Plant parasitic nematodes: habitats, hormones and horizontally-acquired genes. J Plant Growth Regul 19:183–194Google Scholar
  55. Millero FJ, Feistel R, Wright DG, McDougall TJ (2008) The composition of Standard Seawater and the definition of the Reference-Composition Salinity Scale. Deep Sea Res I 55:50–72CrossRefGoogle Scholar
  56. Mueller GM, McKown RL, Corotto LV, Hague C, Warren GJ (1991) Inhibition of recrystallization in ice by chimeric proteins containing antifreeze domains. J Biol Chem 266:7339–7344PubMedGoogle Scholar
  57. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New YorkGoogle Scholar
  58. Nikoh N, Tanaka K, Shibata F, Kondo N, Hizume M, Shimada M, Fukatsu T (2008) Wolbachia genome integrated in an insect chromosome: evolution and fate of laterally transferred endosymbiont genes. Genome Res 18:272–280CrossRefPubMedGoogle Scholar
  59. Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J (2003) TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19:651–652CrossRefPubMedGoogle Scholar
  60. Raymond JA (2000) Distribution and partial characterization of ice-active molecules associated with sea-ice diatoms. Polar Biol 23:721–729CrossRefGoogle Scholar
  61. Raymond JA, Fritsen CH (2000) Ice-active substances associated with Antarctic freshwater and terrestrial photosynthetic organism. Antarct Sci 12:418–424CrossRefGoogle Scholar
  62. Raymond JA, Fritsen CH (2001) Semipurification and ice recrystallization inhibition activity ice-active of substances associated with Antarctic photosynthetic organisms. Cryobiology 43:63–70CrossRefPubMedGoogle Scholar
  63. Raymond JA, Knight CA (2003) Ice binding, recrystallization inhibition, and cryoprotective properties of ice-active substances associated with Antarctic sea ice diatoms. Cryobiology 46:174–181CrossRefPubMedGoogle Scholar
  64. Raymond JA, Sullivan CW, DeVries AL (1994) Release of an ice-active substance by Antarctic sea ice diatoms. Polar Biol 14:71–75CrossRefGoogle Scholar
  65. Raymond JA, Fritsen C, Shen K (2007) An ice-binding protein from an Antarctic sea ice bacterium. FEMS Microbiol Ecol 61:214–221CrossRefPubMedGoogle Scholar
  66. Schierwater B, Eitel M, Jakob W, Osigus H-J, Hadrys H, Dellaporta SL, Kolokotronis S–O, DeSalle R (2008) Concatenated analysis sheds light on early metazoan evolution and fuels a modern “urmetazoon” hypothesis. PLoS Biol 7:e1000020Google Scholar
  67. Schnack-Schiel SB, Thomas DN, Dieckmann GS, Eicken H, Gradinger R, Spindler M, Weissenberger J, Mizdalski E, Beyer K (1995) Life cycle strategy of the Antarctic calanoid copepod Stephos longipes. Prog Oceanogr 36:45–75CrossRefGoogle Scholar
  68. Schnack-Schiel SB, Thomas DN, Dahms H-U, Haas C, Mizdalski E (1998) Copepods in Antarctic sea ice. Antarct Res Ser 73:173–182Google Scholar
  69. Schnack-Schiel SB, Haas C, Michels J, Mizdalski E, Schünemann H, Steffens M, Thomas DN (2008) Copepods in sea ice of the western Weddell Sea during austral spring 2004. Deep-Sea Res II 55:1056–1067CrossRefGoogle Scholar
  70. Schünemann H, Werner I (2005) Seasonal variations in distribution patterns of sympagic meiofauna in Arctic pack ice. Mar Biol 146:1091–1102CrossRefGoogle Scholar
  71. Sullivan CW, Palmisano AC (1984) Sea ice microbial communities: distribution, abundance, and diversity of ice bacteria in McMurdo Sound, Antarctica, in 1980. Appl Environ Microbiol 47:788–795PubMedGoogle Scholar
  72. Swadling KM (2001) Population structure of two Antarctic ice-associated copepods, Drescheriella glacialis and Paralabidocera antarctica, in winter sea-ice. Mar Biol 139:597–603CrossRefGoogle Scholar
  73. Swadling KM, Gibson JAE, Ritz DA, Nichols PD (1997) Horizontal patchiness in sympagic organisms of the Antarctic fast ice. Antarct Sci 9:399–406CrossRefGoogle Scholar
  74. Swadling KM, McKinnon AD, De'ath G, Gibson JAE (2004) Life cycle plasticity and differential growth and development in marine and lacustrine populations of an Antarctic copepod. Limnol Oceanogr 49:644–655CrossRefGoogle Scholar
  75. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  76. Tanimura A, Hoshiai T, Fukuchi M (1996) The life cycle strategy of the ice-associated copepod Paralabidocera antarctica (Calanoida, Copepoda), at Syowa Station, Antarctica. Antarct Sci 8:257–266CrossRefGoogle Scholar
  77. Tanimura A, Hoshiai T, Fukuchi M (2002) Change in habitat of the sympagic copepod Paralabidocera antarctica from fast ice to seawater. Polar Biol 25:667–671Google Scholar
  78. Theede H, Schneppenheim R, Béress L (1976) Frostschutz-Glykoproteine bei Mytilus edulis? Mar Biol 36:183–189CrossRefGoogle Scholar
  79. Thomas DN, Dieckmann GS (2002) Antarctic sea ice: a habitat for extremophiles. Science 295:641–644CrossRefPubMedGoogle Scholar
  80. Vihma T, Uotila H, Cheng B, Launiainen J (2002) Surface heat budget over the Weddell Sea: Buoy results and model comparisons. J Geophys Res 107(C2):3013CrossRefGoogle Scholar
  81. Waller CL, Worland MR, Convey P, Barnes DKA (2006) Ecophysiology strategies of Antarctic intertidal invertebrates faced with freezing stress. Polar Biol 29:1077–1083CrossRefGoogle Scholar
  82. Wittlieb J, Khalturin K, Lohmann JU, Anton-Erxleben F, Bosch TCG (2006) Transgenic Hydra allow in vivo tracking of individual stem cells during morphogenesis. Proc Natl Acad Sci USA 103:6208–6211Google Scholar
  83. Xu HH, Tabita FR (1996) Ribulose-1, 5-biphosphate carboxylase/oxygenase gene expression and diversity of Lake Erie planktonic microorganisms. Appl Environ Microbiol 62:1913–1921PubMedGoogle Scholar
  84. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in Global climate 65 Ma to present. Science 292:686–693CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Institute for Polar EcologyKielGermany
  2. 2.Alfred-Wegener-Institute for Polar and Marine ResearchBremerhavenGermany
  3. 3.Leibniz Institute of Marine Sciences, IFM-GEOMARKielGermany

Personalised recommendations