Polar Biology

, 32:1629 | Cite as

Barcoding Antarctic Biodiversity: current status and the CAML initiative, a case study of marine invertebrates

Original Paper

Abstract

The Census of Antarctic Marine Life (CAML) aims to collate DNA barcode data for Antarctic marine species. DNA barcoding is a technique that uses a short gene sequence from a standardised region of the genome as a diagnostic ‘biomarker’ for species. This study aimed to quantify genetic data currently available in GenBank in order to establish whether a representative cross-section of Antarctic marine taxa and bio-geographic areas has been sequenced and to propose priorities for barcoding, with a particular emphasis on marine invertebrate species. It was found that, amongst marine invertebrate fauna, sequence information covers a limited range of taxa and areas—mainly Crustacea, Annelida and Mollusca from the Weddell Sea and the Antarctic Peninsula. Only 15% of genes sequenced in Antarctic marine invertebrates were the standard barcode gene cytochrome c oxidase subunit 1 (CO1), the majority were other nuclear and mitochondrial genes. There is an urgent need for more in-depth genetic barcoding and species identification studies in Antarctic science, from a range of taxa and areas, given the rate of climate-driven habitat changes that might lead to extinctions in the region. CAML hopes to redress the balance, by collecting and sequencing over the circum-Antarctic area, using material from voyages that occurred during 2008 and 2009, within the framework of the International Polar Year (IPY).

Keywords

Antarctic Barcoding Molecular phylogenetics Marine biodiversity Invertebrates 

References

  1. Allcock AL, Piertney SB (2002) Evolutionary relationships of Southern Ocean Octipodidae (Cephalapoda, Octopoda) and a new diagnosis of Pareledone. Mar Biol 140:129–135CrossRefGoogle Scholar
  2. Alverson AJ, Jansen RK, Theriot EC (2007) Bridging the Rubicon: phylogenetic analysis reveals repeated colonizations of marine and fresh waters by thalassiosiroid diatoms. Mol Phylogenet Evol 45(1):193–210CrossRefPubMedGoogle Scholar
  3. Arango CP, Wheeler WC (2007) Phylogeny of the sea spiders (Arthropoda, Pycnogonida) based on direct optimization of six loci and morphology. Cladistics 23:255–293CrossRefGoogle Scholar
  4. Arntz WE, Gutt J, Klages M (1997) Antarctic marine biodiversity: an overview. In: Battaglia B, Valencia J, Walton D (eds) Antarctic communities: species, structure and survival. Cambridge University Press, Cambridge, pp 3–14Google Scholar
  5. Baker AJ, Pereira SL, Haddrath OP, Edge K-A (2006) Multiple gene evidence for expansion of extant penguins out of Antarctica due to global cooling. Proc R Soc B: Biol Sci 273(1582):11–17CrossRefGoogle Scholar
  6. Balzer C, Held C, Wägele JW (2000) Furctarcturus polarsterni gen. nov., sp nov., a large deep sea arcturid isopod from the Drake Passage with a preliminary molecular characterisation. Polar Biol 23:833–839CrossRefGoogle Scholar
  7. Blaxter M (2003) Counting angels with DNA. Nature 421:122–124CrossRefPubMedGoogle Scholar
  8. Brandt A, De Broyer C, Gooday A, Hilbig B, Thomson M (2004) Introduction to ANDEEP (ANtarctic benthic DEEP-sea biodiversity: colonization history and recent community patterns)—a tribute to Howard L. Sanders. Deep Sea Res II 51(2004):1457–1465CrossRefGoogle Scholar
  9. Brandt A, Gooday AJ, Brandano SN, Brix S, Broekeland W, Cedhagen T, Choudhury M, Cornelius N, Danis B, De Mesel I, Diaz RJ, Gillan DC, Ebbe B, Howe JA, Janussen D, Kaiser S, Linse K, Malyutina M, Pawlowski J, Raupach M, Vanreusel A (2007) First insights into the biodiversity and biogeography of the Southern Ocean deep sea. Nature 447:307–311CrossRefPubMedGoogle Scholar
  10. Clarke A, Crame JA (1989) The origin of the Southern Ocean marine fauna. In: Crame JA (ed) Origins and evolution of the Antarctic biota. Geological Society of London Special Publication 47, pp 253–268Google Scholar
  11. Clarke A, Johnston NM (2003) Antarctic marine benthic diversity. Adv Oceanogr Mar Biol Annu Rev 47:47–114Google Scholar
  12. Davis CS, Delisle I, Stirling I, Siniff DB, Strobeck C (2004) A phylogeny of the extant Phocidae inferred from complete mitochondrial DNA coding regions. Mol Phylogenet Evol 33(2):363–377CrossRefPubMedGoogle Scholar
  13. Dreyer H, Wägele JW (2002) The Scutocoxifera Tax.Nov. and the information content of nuclear SSU rDNA sequences for reconstruction of isopod phylogeny (Peracarida: Isopoda). J Crustacean Biol 22(2):217–234CrossRefGoogle Scholar
  14. Dykhuizen DE (1998) Santa Rosalia revisited: why are there so many species of bacteria? Antonie van Leeuwenhoek 73:25–33CrossRefPubMedGoogle Scholar
  15. Gérard K, Bierne N, Borsa P, Chenuil A, Féral JP (2008) Pleistocene separation of mitochondrial lineages of Mytilus spp. mussels from Northern and Southern Hemispheres and strong genetic differentiation among southern populations. Mol Phylogenet Evol 49:84–91CrossRefPubMedGoogle Scholar
  16. Goetze E (2003) Cryptic speciation on the high seas; global phylogenetics of the copepod family Eucalanidae. Proc R Soc B Biol Sci 270(1531):2321–2331CrossRefGoogle Scholar
  17. Gutt J, Sirenko BI, Smirnov IS, Arntz WE (2004) How many macrozoobenthic species might inhabit the Antarctic shelf? Antarctic Sci 16(1):11–16CrossRefGoogle Scholar
  18. Habura A, Pawlowski J, Hanes SD, Bowser SS (2004) Unexpected foraminiferal diversity revealed by small-subunit rDNA analysis of antarctic sediment. J Eukaryot Microbiol 51(2):173–179CrossRefPubMedGoogle Scholar
  19. Hajibabaei M, de Waard JR, Ivanova NV, Ratnasingham S, Dooh RT, Kirk SL, Mackie PL, Hebert PDN (2005) Critical factors for assembling a high volume of DNA barcodes. Phil Trans R Soc Ser B 360:1959–1967CrossRefGoogle Scholar
  20. Hebert PDN, Cywinska A, Ball SL, de Waard JR (2003a) Biological identifications through DNA barcodes. Proc R Soc Lond Ser B 270:313–321CrossRefGoogle Scholar
  21. Hebert PDN, Ratnasingham S, Jeremy R, de Waard JR (2003b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc Biol Sci Biol Lett 270(Suppl 1):S96–S99CrossRefGoogle Scholar
  22. Held C (2000) Phylogeny and biogeography of serolid isopods (Crustacea, Isopoda, Serolidae) and the use of ribosomal expansion segments in molecular systematics. Mol Phylogenet Evol 15(2):165–178CrossRefPubMedGoogle Scholar
  23. Held C (2003) Molecular evidence for cryptic speciation within Ceratoserolis trilobitoides (Crustacea, Isopoda). Antarctic Biol Global Context 305:1–5Google Scholar
  24. Held C, Wägele JW (2005) Cryptic speciation in the giant Antarctic isopod Glyptonotus antarcticus (Isopoda: Valvifera: Chaertiliidae). Sci Marina 69(2):175–181Google Scholar
  25. Hill F, Gemund C, Benes V, Ansorge W, Gibson J (2000) An estimate of large-scale sequencing accuracy. EMBO Rep 1:29–31CrossRefPubMedGoogle Scholar
  26. Kerr JT, Currie DJ (1995) Effects of human activity on global extinction risk. Conserv Biol 9(6):1528–1538CrossRefGoogle Scholar
  27. Kidd DM, Liu X (2008) GEOPHYLOBUILDER 1.0: an ARCGIS extension for creating ‘geophylogenies’. Mol Ecol Resourc 8:88–91CrossRefGoogle Scholar
  28. Kristensen T, Lopez R, Prydz H (1992) An estimate of the sequencing error frequency in the DNA sequence databases. DNA Sequence 2:343–346CrossRefPubMedGoogle Scholar
  29. Lamperti ED, Kittelberger JM, Smith TF, Villakomaroff L (1992) Corruption of genomic databases with anomalous sequence. Nucleic Acids Res 20:2741–2747CrossRefPubMedGoogle Scholar
  30. Lawton J (1998) Small is beautiful, and very strange. Oikos 81(1):3–5CrossRefGoogle Scholar
  31. Lessios HA, Kessing BD, Pearse JS (2001) Population Structure and Speciation in Tropical Seas: Global Phylogeography of the Sea Urchin Diadema. Evolution 55(5):955–975CrossRefGoogle Scholar
  32. Linse K, Cope T, Lörz AN, Sands CJ (2007) Is the Scotia Sea a centre of Antarctic marine diversification? Some evidence of cryptic speciation in the circum-Antarctic bivalve Lissarca notorcadensis (Arcoidea: Philobryidae). Polar Biol 30(8):1059–1068CrossRefGoogle Scholar
  33. Lörz AN, Held C (2004) A preliminary molecular and morphological phylogeny of the Antarctic Epimeriidae and Iphimediidae (Crustacea, Amphipoda). Mol Phylogenet Evol 31:4–15CrossRefPubMedGoogle Scholar
  34. Mahon A, Arango C, Halanych K (2008) Genetic diversity of Nymphon (Arthropoda: Pycnogonida: Nymphonidae) along the Antarctic Peninsula with a focus on Nymphon australe Hodgson 1902. Mar Biol 155:315–323CrossRefGoogle Scholar
  35. Mallet J, Willmot K (2003) Taxonomy: renaissance or Tower of Babel? Trends Ecol Evol 18:57–59CrossRefGoogle Scholar
  36. May RM (1988) How many species are there on earth? Science 241(4872):1441–1449CrossRefPubMedGoogle Scholar
  37. McNeil BI, Matear RJ (2008) Southern Ocean acidification: a tipping point at 450-ppm atmospheric CO2. Proc Natl Acad Sci 105(48):18860–18864CrossRefPubMedGoogle Scholar
  38. Moritz C, Cicero C (2004) DNA barcoding: promise and pitfalls. PLoS Biol 2(10):354CrossRefGoogle Scholar
  39. Page T, Linse K (2002) More evidence of speciation and dispersal across the Antarctic Polar Front through molecular systematics of Southern Ocean Limatula (Bivalvia: Limidae). Polar Biol 25:818–826Google Scholar
  40. Palumbi SR (1992) Marine speciation on a small planet. Trends Ecol Evol 7(4):114–118CrossRefGoogle Scholar
  41. Palumbi SR, Cipriano F (1998) Species identification using genetic tools: the value of nuclear and mitochondrial gene sequences in whale conservation. J Hered 89(5):459–464CrossRefPubMedGoogle Scholar
  42. Pawlowski J, Holzmann M, Berney C, Fahrni J, Gooday AJ, Cedhagenm T, Habura A, Boweser SS (2003) The evolution of early Foraminifera. Proc Natl Acad Sci 100(20):11494–11498CrossRefPubMedGoogle Scholar
  43. Pawlowski J, Bowser SS, Gooday AJ (2007a) A note on the genetic similarity between shallow- and deep-water Epistominella vitrea (Foraminifera) in the Antarctic. Deep Sea Res II Top Stud Oceanogr 54(16–17):1720–1726CrossRefGoogle Scholar
  44. Pawlowski J, Fahrni J, Lecroq B, Longet D, Cornelius N, Excoffier L, Cedhagen T, Gooday AJ (2007b) Bipolar gene flow in deep-sea benthic foraminifera. Mol Ecol 16:4089–4096CrossRefPubMedGoogle Scholar
  45. Peck JR, Welch JJ (2004) Adaptation and species range. Evolution 58:211–221PubMedGoogle Scholar
  46. Ratnasingham S, Hebert PDN (2007) BOLD: the Barcode of Life Data System (www.barcodinglife.org). Mol Ecol Notes 7(3): 355–364Google Scholar
  47. Raupach MJ, Thatje S (2006) New records of the rare shrimp parasite Zonophryxus quinquedens Barnard, 1913 (Crustacea, Isopoda, Dajidae): ecological and phylogenetic implications. Polar Biol 29:439–443CrossRefGoogle Scholar
  48. Raupach MJ, Wägele JW (2006) Distinguishing cryptic species in Antarctic Asellota (Crustacea: Isopoda)—a preliminary study of mitochondrial DNA in Acanthaspidia drygalskii. Antarctic Sci 18(2):191–198CrossRefGoogle Scholar
  49. Raupach MJ, Malyutina M, Brandt A, Wägele J-W (2007) Molecular data reveal a highly diverse species flock within the munnopsoid deep-sea isopod Betamorpha fusiformis (Barnard, 1920) (Crustacea: Isopoda: Asellota) in the Southern Ocean. Deep Sea Res II 54:1820–1830CrossRefGoogle Scholar
  50. Rock J, Costa FO, Walker DI, North AW, Hutchinson WF, Carvalho GR (2008) DNA barcodes of fish of the Scotia Sea, Antarctica indicate priority groups for taxonomic and systematics focus. Antarctic Sci 20(3):253–262CrossRefGoogle Scholar
  51. Savage JM (1995) Systematics and the biodiversity crisis. BioScience 45(10):673–679CrossRefGoogle Scholar
  52. Sperling FAH (2003) DNA barcoding: Deus ex machina. Newslett Biol Surv Can (Terrestrial Arthropods) 22:50–53Google Scholar
  53. Strugnell JM, Rogers AD, Prodöhl PA, Collins MA, Allcock AL (2008a) The thermohaline expressway: the Southern Ocean as a centre of origin for deep-sea octopuses. Cladistics 24(6):853–860CrossRefGoogle Scholar
  54. Strugnell JM, Collins MA, Allcock AL (2008b) Molecular evolutionary relationships of the octopodid genus Thaumeledone (Cephalopoda: Octopodidae) from the Southern Ocean. Antarctic Sci 20:245–251CrossRefGoogle Scholar
  55. Symondson WOC (2002) Molecular identification of prey in predator diets. Mol Ecol 11(4):627–641CrossRefPubMedGoogle Scholar
  56. Taylor JD, Williams ST, Glover EA (2007) Evolutionary relationships of the bivalve family Thyasiridae (Mollusca: Bivalvia), monophyly and superfamily status. J Mar Biol Assoc UK 87:565–574CrossRefGoogle Scholar
  57. Thornhill DJ, Mahon AR, Norenburg JL, Halanych KM (2008) Open-ocean barriers to dispersal: a test case with the Antarctic Polar Front and the ribbon worm Parborlasia corrugatus (Nemertea: Lineidae). Mol Ecol 17:5104–5117CrossRefPubMedGoogle Scholar
  58. Vaughan DG, Marshall GJ, Connolley WM, Parkinson C, Mulvaney R, Hodgson DA, King JC, Pudsey CJ, Turner J (2003) Recent rapid regional climate warming on the Antarctic Peninsula. Climat Change 60:243–274CrossRefGoogle Scholar
  59. Vences M, Thomas M, van der Meijden A, Chiari Y, Vieites DR (2005) Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. Front Zool 2(1):5CrossRefPubMedGoogle Scholar
  60. Vonnemann V, Schroedl M, Klussmann-Kolb A, Wägele H (2005) Reconstruction of the phylogeny of the Opisthobranchia (Mollusca: Gastropoda) by means of 18S and 28S rRNA gene sequences. J Molluscan Stud 71:113–125CrossRefGoogle Scholar
  61. Webb KE, Barnes DKA, Clark M, Bowden DA (2006) DNA barcoding: a molecular tool to identify Antarctic marine larvae. Deep Sea Res II 53:1053–1060CrossRefGoogle Scholar
  62. Wilson NG, Hunter RL, Lockhart SJ, Halanych KM (2007) Multiple lineages and absence of panmixia in the “circumpolar” crinoid Promachocrinus kerguelensis from the Atlantic sector of Antarctica. Mar Biol 152(4):895–904CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Scott Polar Research InstituteUniversity of CambridgeCambridgeUK
  2. 2.British Antarctic SurveyNatural Environmental Research CouncilCambridgeUK

Personalised recommendations