Polar Biology

, Volume 32, Issue 10, pp 1427–1433 | Cite as

Responses of Pygoscelis adeliae and P. papua populations to environmental changes at Isla 25 de Mayo (King George Island)

  • Alejandro R. Carlini
  • N. R. Coria
  • M. M. Santos
  • J. Negrete
  • M. A. Juares
  • G. A. Daneri
Original Paper

Abstract

As part of a monitoring study of Adélie and Gentoo penguin colonies, birds occupying nests with eggs and chicks in crèches were counted annually from the 1995/1996 to the 2006/2007 seasons at Stranger Point, Isla 25 de Mayo (King George Island), Antarctica. During the study period the Adélie penguin population showed a decrease of 62%. The number of chicks in crèches followed a similar trend, the smallest number occurring in 2002, when it was 63% lower than in 1995/1996. In contrast, the Gentoo breeding population size increased by 68%, while chicks produced increased by 63%. Despite the opposing trends in population size between species, there was a positive relation in their interannual variation, although the extent, and for some years the direction, of the change observed always favoured Gentoo penguins. Breeding success (chicks in crèches/nests with eggs) fluctuated between 0.65 and 1.26 for Adélies and between 0.76 and 1.27 for Gentoo penguins, and did not differ significantly between species. The similar breeding success of these species suggests that the contrasting population trends observed were driven by factors operating over winter. We suggest that current changes in environmental conditions may affect adult birds of both species during the previous winter with different intensity but in a roughly similar way, but that juvenile survival of both species and thus the recruitment of new breeders might be affected differentially, with a much lower survival rate of juvenile Adélie penguins.

Keywords

Pygoscelis penguins South Shetland Islands Environmental changes Population decline Breeding success 

References

  1. Ainley DG, LeResche RE, Sladen WJL (1983) Breeding ecology of the Adélie penguin. University of California Press, BerkeleyGoogle Scholar
  2. Barbraud C, Weimerskirch H (2003) Climate and density shape population dynamics of a marine top predator. Proc R Soc Lond B Biol Sci 270:2111–2116. doi:10.1098/rspb.2003.2488 CrossRefGoogle Scholar
  3. Carlini AR, Coria RN, Santos MM, Buján SM (2005) The effect of Chinstrap penguins on the breeding performance of Adélie penguins. Folia Zool (Brno) 54:147–158Google Scholar
  4. Carlini AR, Coria RN, Santos MM, Libertelli MM, Donini G (2007) Breeding success and population trends in Adélie penguins in areas with low and high levels of human disturbance. Polar Biol 30:917–924. doi:10.1007/s00300-006-0251-1 CrossRefGoogle Scholar
  5. CCAMLR (2003) Standard methods for monitoring parameters of predator species. CCAMLR Ecosystem Monitoring Program. CCAMLR, HobartGoogle Scholar
  6. Clarke J, Kerry K, Irvine L, Phillips B (2002) Chick provisioning and breeding success of Adélie penguins at Bechervaise Island over eight successive seasons. Polar Biol 25:21–30. doi:10.1007/s003000100307 CrossRefGoogle Scholar
  7. Croxall JP, Trathan PN, Murphy EJ (2002) Environmental change and Antarctic seabird populations. Science 297:1510–1514. doi:10.1126/science.1071987 PubMedCrossRefGoogle Scholar
  8. Davis LS, McCaffrey FT (1986) Survival analysis of eggs and chicks of Adélie penguins (Pygoscelis adeliae). Auk 103:379–388Google Scholar
  9. Ducklow HW, Baker K, Martinson DG, Quetin LB, Ross RM, Smith RC, Stammerjohn SE, Vernet M, Fraser W (2007) Marine pelagic ecosystems: the West Antarctic Peninsula. Philos Trans R Soc B 362:67–94. doi:10.1098/rstb.2006.1955 CrossRefGoogle Scholar
  10. Forcada J, Trathan PN, Reid K, Murphy EJ, Croxall JP (2006) Contrasting population changes in sympatric penguin species in association with climate warming. Glob Chang Biol 12:411–423. doi:10.1111/j.1365-2486.2006.01108.x CrossRefGoogle Scholar
  11. Fraser W, Hofmann E (2003) A predator’s perspective on causal links between climate change, physical forcing and ecosystem response. Mar Ecol Prog Ser 265:1–15. doi:10.3354/meps265001 CrossRefGoogle Scholar
  12. Fraser WR, Trivelpiece WZ (1996) Factors controlling the distribution of seabirds: winter–summer heterogeneity in the distribution of Adélie penguin populations. Foundations for ecological research west of the Antarctic Peninsula. Antarct Res Ser 70:257–272Google Scholar
  13. Fraser WR, Trivelpiece WZ, Ainley D, Trivelpiece SG (1992) Increases in Antarctic penguin populations: reduced competition with whales or a loss of ice due to environmental warming? Polar Biol 11:525–531. doi:10.1007/BF00237945 CrossRefGoogle Scholar
  14. Giese M (1996) Effects of human activity on Adélie penguin Pygoscelis adeliae breeding success. Biol Conserv 75:157–164. doi:10.1016/0006-3207(95)00060-7 CrossRefGoogle Scholar
  15. Hinke JT, Salwicka K, Trivelpiece SG, Watters GM, Trivelpiece WZ (2007) Divergent responses in Pygoscelis penguins reveal a common environmental driver. Oecologia 153:845–855. doi:10.1007/s00442-007-0781-4 PubMedCrossRefGoogle Scholar
  16. Hughes L (2000) Biological consequences of global warming, is the signal already apparent? Trends Ecol Evol 15:369–381. doi:10.1016/S0169-5347(00)01940-6 CrossRefGoogle Scholar
  17. Ingolfsson O, Hjort C, Humlum O (2003) Glacial and climate history of the Antarctic Peninsula since the last glacial maximum. Arct Antarct Alp Res 35:175–186. doi:10.1657/1523-0430(2003)035[0175:GACHOT]2.0.CO;2 CrossRefGoogle Scholar
  18. King JC (1994) Recent climate variability in the vicinity of the Antarctic Peninsula. Int J Climatol 14:357–369. doi:10.1002/joc.3370140402 CrossRefGoogle Scholar
  19. Leirs H, Stenseth NC, Nichols JD, Hines JE, Verhagen R, Verheyen W (1997) Stochastic seasonality and nonlinear density-dependent factors regulate population size in an African rodent. Nature 389:176–180. doi:10.1038/38271 PubMedCrossRefGoogle Scholar
  20. Loeb V, Siegel V, Holm-Hansen O, Hewitt R, Fraser W, Trivelpiece W, Trivelpiece S (1997) Effects of sea-ice extent and krill or salp dominance on the Antarctic food web. Nature 387:897–900. doi:10.1038/43174 CrossRefGoogle Scholar
  21. Sander M, Balbão TC, Polito MJ, Costa ES, Carneiro APB (2007a) Recent decrease in chinstrap penguin (Pygoscelis antarctica) populations at two of Admiralty Bay’s islets on King George Island, South Shetland Islands, Antarctica. Polar Biol 30:659–661. doi:10.1007/s00300-007-0259-1 CrossRefGoogle Scholar
  22. Sander M, Balbão TC, Costa ES, dos Santos CR, Petra MV (2007b) Decline of the breeding population of Pygoscelis antarctica and Pygoscelis adeliae on Penguin Island, South Shetlands, Antarctica. Polar Biol 30:651–664. doi:10.1007/s00300-006-0218-2 CrossRefGoogle Scholar
  23. Santos MM, Juares MA, Moreira ME, Coria NR, Carlini AR (2008) Éxito reproductivo en el pingüino adelia: es la predación del skua pardo un factor importante? In: Proceedings of the XII Reunión Argentina de Ornitología. Neuquén, Argentina, p 169Google Scholar
  24. Siegel V, Loeb V (1995) Recruitment of Antarctic Krill Euphausia superba and possible causes for its variability. Mar Ecol Prog Ser 123:45–56. doi:10.3354/meps123045 CrossRefGoogle Scholar
  25. Skvarca P, Rack W, Rott H, Donangelo TL (1999) Climatic trends and the retreat and disintegration of ice shelves on the Antarctic Peninsula: an overview. Polar Res 18:151–157. doi:10.1111/j.1751-8369.1999.tb00287.x CrossRefGoogle Scholar
  26. Smith RC, Stammerjohn SE, Baker KS (1996) Surface air temperature variations in the western Antarctic Peninsula Region. Foundations for ecological research west of Antarctic Peninsula. Antarct Res Ser 70:105–121Google Scholar
  27. Smith RC, Ainley D, Baker K, Domack E, Emslie S, Fraser S, Kennet A, Mosley-Thomson E, Stammerjohn S, Vernet M (1999) Marine ecosystem sensitivity to climate change. Bioscience 49:393–404. doi:10.2307/1313632 CrossRefGoogle Scholar
  28. Trathan PN, Croxall JP, Murphy EJ (1996) Dynamics of Antarctic penguin populations in relation to inter-annual variability in sea-ice distribution. Polar Biol 16:321–330. doi:10.1007/BF02342178 CrossRefGoogle Scholar
  29. Trivelpiece WZ, Fraser W (1996) The breeding biology and distribution of Adélie penguins: adaptations to environmental variability. Foundation for ecological research west of the Antarctic Peninsula. Antarct Res Ser 70:273–285Google Scholar
  30. Trivelpiece WZ, Volkman N (1979) Nest-site competition between Adélie and Chinstrap penguins: an ecological interpretation. Auk 96:675–681Google Scholar
  31. Trivelpiece WZ, Trivelpiece SG, Volkman NJ (1987) Ecological segregation of Adélie, Gentoo and Chinstrap penguins at King George Island, Antarctica. Ecology 68:351–361. doi:10.2307/1939266 CrossRefGoogle Scholar
  32. Williams TD (1995) The penguins. Oxford University Press, OxfordGoogle Scholar
  33. Woehler EJ, Slip DJ, Robertson LM, Fullagar PJ, Burton HR (1991) The distribution, abundance and status of Adélie penguins Pygoscelis adeliae at the Windmill Island, Wilkes Land, Antarctica. Mar Ornithol 19:1–19Google Scholar
  34. Woehler EJ, Penney RL, Creet SM, Burton HR (1994) Impact of human visitors on breeding success and long-term population trends in Adélie penguins at Casey, Antarctica. Polar Biol 14:269–274. doi:10.1007/BF00239175 CrossRefGoogle Scholar
  35. Yeates GW (1975) Microclimate, climate, and breeding success in Antarctic penguins. In: Stonehouse B (ed) The biology of penguins. University Park Press, Baltimore, pp 397–409Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Alejandro R. Carlini
    • 1
  • N. R. Coria
    • 1
  • M. M. Santos
    • 1
    • 2
  • J. Negrete
    • 1
    • 2
  • M. A. Juares
    • 2
  • G. A. Daneri
    • 3
  1. 1.Depto. de Ciencias BiológicasInstituto Antártico ArgentinoBuenos AiresArgentina
  2. 2.CONICETBuenos AiresArgentina
  3. 3.División MastozoologíaMuseo Argentino de Cs. Naturales “B. Rivadavia”Buenos AiresArgentina

Personalised recommendations