Skip to main content

Advertisement

Log in

Phytoplankton and phytobenthos pigment strategies: implications for algal survival in the changing Arctic

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

We compared phytoplankton and phytobenthos pigment strategies in 17 shallow lakes and ponds from northern Canada and Alaska, sampled during mid to late summer. Benthic chlorophyll a concentrations (8–261 mg m−2) greatly exceeded those of the phytoplankton (0.008–1.4 mg m−2) in all sites. Cyanobacteria dominated the phytobenthos, while green algae and fucoxanthin-groups characterized the plankton. Both communities had higher photoprotection in cold, UV-transparent, high latitude waters. Phytoplankton had higher concentrations of photoprotective carotenoids per unit chlorophyll a than the phytobenthos. The planktonic photoprotective pigments were positively correlated with UV-penetration, and inversely correlated with temperature and coloured dissolved organic matter. A partial redundancy analysis showed that the benthic pigments were related to latitude, area and temperature. The UV-screening compound scytonemin occurred in high concentrations in the phytobenthos and was inversely related to temperature, while benthic carotenoids per unit chlorophyll a showed much lower variability among sites. These differing pigment strategies imply divergent responses to environmental change between the phytobenthos and phytoplankton in high latitude lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersson M, Van Nieuwerburgh L, Snoeijs P (2003) Pigment transfer from phytoplankton to zooplankton with emphasis on astaxanthin production in the Baltic Sea food web. Mar Ecol Prog Ser 254:213–224. doi:10.3354/meps254213

    Article  CAS  Google Scholar 

  • Antoniades D, Crawley C, Douglas M, Pienitz R, Andersen DT, Doran PT, Hawes I, Pollard WH, Vincent WF (2007) Abrupt environmental change in Canada’s northernmost lake inferred from fossil diatom and pigment stratigraphy. Geophys Res Lett 34:L18708. doi:10.1029/2007GL030947

    Article  Google Scholar 

  • Bonilla S, Villeneuve V, Vincent WF (2005) Benthic and planktonic algal communities in a high Arctic lake: pigment structure and contrasting responses to nutrient enrichment. J Phycol 41:1120–1130. doi:10.1111/j.1529-8817.2005.00154.x

    Article  CAS  Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055. doi:10.2307/1940179

    Article  Google Scholar 

  • Caplanne S, Laurion I (2008) Effect of chromophoric dissolved organic matter on epilimnetic stratification in lakes. Aquat Sci 70:123–133. doi:10.1007/s00027-007-7006-0

    Article  CAS  Google Scholar 

  • Cockell CS, Knowland J (1999) Ultraviolet radiation screening compounds. Biol Rev Camb Philos Soc 74:311–345. doi:10.1017/S0006323199005356

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW (2000) Harvesting sunlight safely. Nature 403:371–374. doi:10.1038/35000315

    Article  PubMed  CAS  Google Scholar 

  • Fleming ED, Castenholz R (2007) Effects of periodic desiccation on the synthesis of the UV-screening compound, scytonemin, in cyanobacteria. Environ Microbiol 9:1448–1455. doi:10.1111/j.1462-2920.2007.01261.x

    Article  PubMed  CAS  Google Scholar 

  • Fleming ED, Castenholz RW (2008) Effects of nitrogen source on the synthesis of the UV-screening compound, scytonemin, in the cyanobacterium Nostoc punctiforme PCC 73102. FEMS Microbiol Ecol 63:301–308. doi:10.1111/j.1574-6941.2007.00432.x

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Pichel F, Castenholz RW (1991) Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J Phycol 27:395–409. doi:10.1111/j.0022-3646.1991.00395.x

    Article  CAS  Google Scholar 

  • Goodwin TW (1980) The Biochemistry of the Carotenoids. I-Plants. Chapman and Hall, London

    Google Scholar 

  • Hodgson DA, Vyverman W, Sabbe K (2001) Limnology and biology of saline lakes in the Rauer Islands, eastern Antarctica. Antarct Sci 13:255–270

    Google Scholar 

  • Hodgson DA, Vyverman W, Verleyen E, Sabbe K, Leavitt P, Taton A, Squier AH, Keely BJ (2004) Environmental factors influencing the pigment composition of in situ benthic microbial communities in east Antarctic lakes. Aquat Microb Ecol 37:247–263. doi:10.3354/ame037247

    Article  Google Scholar 

  • Izaguirre I, Vinocur A, Mataloni G, Pose M (1998) Phytoplankton communities in relation to trophic status in lakes from Hope Bay (Antarctic Peninsula). Hydrobiologia 369/370:73–87. doi:10.1023/A:1017070415024

    Article  CAS  Google Scholar 

  • Keatley BE, Douglas MSV, Smol JP (2007) Limnological characteristics of a high arctic Oasis and comparisons across northern Ellesmere Island. Arctic 60:294–308

    Google Scholar 

  • Król M, Maxwell DP, Huner NPA (1997) Exposure of Dunaliella salina to low temperature mimics the high light-induced accumulation of carotenoids and the carotenoid binding protein (Cbr). Plant Cell Physiol 38:213–216

    Google Scholar 

  • Laurion I, Vincent WF, Dean DRS (1997) Underwater ultraviolet radiation: development of spectral models for northern latitude lakes. Photochem Photobiol 65:107–114

    CAS  Google Scholar 

  • Leavitt P, Cumming BF, Smol JP, Reasoner M, Pienitz R, Hodgson DA (2003) Climatic control of ultraviolet radiation effects on lakes. Limnol Oceanogr 48:2062–2069

    Google Scholar 

  • Legendre P (2008) Studying beta diversity: ecological variation partitioning by multiple regression and canonical analysis. J Plant Ecol 1:3–8. doi:10.1093/jpe/rtm001

    Article  Google Scholar 

  • Markager S, Vincent WF, Tang EPY (1999) Carbon fixation by phytoplankton in high Arctic lakes: implications of low temperature for photosynthesis. Limnol Oceanogr 44:597–607

    Article  CAS  Google Scholar 

  • Michelutti N, Wolfe A, Vinebrooke RD, Rivard B (2005) Recent primary production increases in arctic lakes. Geophys Res Lett 32:L19715. doi:10.1029/2005GL023693

    Article  Google Scholar 

  • Mueller DR, Vincent WF, Bonilla S, Laurion I (2005) Extremotrophs, extremophiles and broadband pigmentation strategies in a high arctic ice shelf ecosystem. FEMS Microbiol Ecol 53:73–87. doi:10.1016/j.femsec.2004.11.001

    Article  PubMed  CAS  Google Scholar 

  • Porra RJ, Pfündel EE, Engel N (1997) Metabolism and function of photosynthetic pigments. In: Jeffrey SW, Mantoura RFC, Wright SW (eds) Phytoplankton pigments in oceanography. UNESCO, Paris, pp 85–126

    Google Scholar 

  • Prowse T, Wrona FJ, Reist JD, Gibson JJ, Hobbie JE, Lévesque LMJ (2006) Climate change effects on hydroecology of arctic freshwater ecosystems. Ambio 35:347–358. doi:10.1579/0044-7447(2006)35[347:CCEOHO]2.0.CO;2

    Article  PubMed  CAS  Google Scholar 

  • Rautio M, Vincent WF (2006) Benthic and pelagic food resources for zooplankton in shallow high-latitude lakes and ponds. Freshw Biol 51:1038–1052. doi:10.1111/j.1365-2427.2006.01550.x

    Article  CAS  Google Scholar 

  • Retamal L, Bonilla S, Vincent WF (2008) Optical gradients and phytoplankton production in the Mackenzie River and the coastal Beaufort Sea. Polar Biol 31:363–379. doi:10.1007/s00300-007-0365-0

    Article  Google Scholar 

  • Roos JC, Vincent WF (1998) Temperature dependence of UV radiation effects on Antarctic cyanobacteria. J Phycol 34:118–125. doi:10.1046/j.1529-8817.1998.340118.x

    Article  Google Scholar 

  • Rücker J, Kohl J-G, Kaiser K (1995) Responses of carotenoids and chlorophylls to variations of growth-limiting factors in three filamentous blue-green algae. Algol Stud 77:51–65

    Google Scholar 

  • Sabbe K, Hodgson D, Verleyen E, Taton A, Wilmotte A, Vanhoutte K, Vyverman W (2004) Salinity, depth and the structure and composition of microbial mats in continental Antarctic lakes. Freshw Biol 49:296–319. doi:10.1111/j.1365-2427.2004.01186.x

    Article  Google Scholar 

  • Smol JP, Douglas M (2007a) From controversy to consensus: making the case for recent climate using lake sediments. Front Ecol Environ 5:466–474. doi:10.1890/060162

    Article  Google Scholar 

  • Smol JP, Douglas M (2007b) Crossing the final ecological threshold in high Arctic ponds. Proc Natl Acad Sci USA 104:12395–12397. doi:10.1073/pnas.0702777104

    Article  PubMed  CAS  Google Scholar 

  • Strecker A, Cobb TP, Vinebrooke RD (2004) Effects of experimental greenhouse warming on phytoplankton and zooplankton communities in fishless alpine ponds. Limnol Oceanogr 49:1182–1190

    CAS  Google Scholar 

  • ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca, New York

    Google Scholar 

  • Toro M, Camacho A, Rochera C, Rico E, Bañón M, Fernández-Valiente E, Marco E, Justel A, Avendaño MC, Ariosa Y, Vincent WF, Quesada A (2007) Limnological characteristics of the freshwater ecosystems of Byers Peninsula, Livingston Island, in maritime Antarctica. Polar Biol 30:635–649. doi:10.1007/s00300-006-0223-5

    Article  Google Scholar 

  • Vézina S, Vincent WF (1997) Arctic cyanobacteria and limnological properties of their environment: Bylot Island, Northwest Territories, Canada (73°N, 80°W). Polar Biol 17:523–534. doi:10.1007/s003000050151

    Article  Google Scholar 

  • Villeneuve V, Vincent WF, Kómarek J (2001) Community structure and microhabitat characteristics of cyanobacterial mats in an extreme high Arctic environment: Ward Hunt Lake. Nova Hedwigia 123:199–224

    Google Scholar 

  • Vincent WF (2000) Cyanobacterial dominance in the polar regions. In: Whitton B, Potts M (eds) Cyanobacteria: their diversity in time and space. Kluwer, Dordrecht, pp 321–338

    Google Scholar 

  • Vincent WF (2007) Cold tolerance in Cyanobacteria and life in the cryosphere. In: Seckbach J (ed) Algae and Cyanobacteria in extreme environments. Springer, Berlin, pp 287–301

    Chapter  Google Scholar 

  • Vincent WF, Laybourn-Parry J (eds) (2008) Polar lakes and rivers: limnology of Arctic and Antarctic aquatic ecosystems. Oxford University Press, Oxford

    Google Scholar 

  • Vincent WF, Pienitz R (1996) Sensitivity of high-latitude freshwater ecosystems to global change: temperature and solar ultraviolet radiation. Geosci Can 23:231–236

    Google Scholar 

  • Vincent WF, Rautio M, Pienitz R (2007) Climate control of underwater UV exposure in polar and alpine aquatic ecosystems. In: Orbaek JB, Kallenborn R, Tombre I, Hegseth EN, Falk-Petersen S, Hoel AH (eds) Arctic Alpine ecosystems and people in a changing environment. Springer, Berlin, pp 227–249

    Chapter  Google Scholar 

  • Vinebrooke RD, Dixit SS, Graham MD, Gunn JM, Chen YW, Belzile N (2002) Whole-lake algal responses to a century of acidic industrial deposition on the Canadian Shield. Can J Fish Aquat Sci 59:483–493. doi:10.1139/f02-025

    Article  Google Scholar 

  • Wrona FJ, Prowse TD, Reist JD, Hobbie JE, Lévesque LMJ, Vincent WF (2006) Climate change effects on aquatic biota, ecosystem structure and function. Ambio 35:1–11

    Google Scholar 

Download references

Acknowledgments

We thank Marie-Josée Martineau for technical assistance and Dermot Antoniades, Teresa Buchaca, Carla Kruk and two anonymous reviewers for their insightful comments on the manuscript. This work was funded by the Natural Sciences and Engineering Research Council of Canada and ArcticNet, with logistic support from Polar Shelf (Natural Resources Canada; this is PCSP publication number 01909).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia Bonilla.

Electronic supplementary material

Below is the link to the electronic supplementary material.

300_2009_626_MOESM1_ESM.doc

Table S1. Environmental characteristics of the 17 studied water bodies in northern Quebec (NQuebec), Alaska, Cornwallis Island (CornI), Ellesmere Island Lake Hazen area (Elles-1) and Ellesmere Island North and Ward Hunt Island (Elles-2). Lat: Latitude; Z = maximum depth; T: temperature; Cond: conductivity; CDOM : coloured dissolved organic matter, estimated by a320. Catchment type (vegetation) is indicated for each region *: n=not measured. (DOC 70 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonilla, S., Rautio, M. & Vincent, W.F. Phytoplankton and phytobenthos pigment strategies: implications for algal survival in the changing Arctic. Polar Biol 32, 1293–1303 (2009). https://doi.org/10.1007/s00300-009-0626-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-009-0626-1

Keywords

Navigation