Estimating prey capture rates of a planktivorous seabird, the little auk (Alle alle), using diet, diving behaviour, and energy consumption

Abstract

Interpreting the impact of environmental change on food webs requires a clear understanding of predator–prey interactions. Such knowledge is often lacking in the marine environment where the foraging behaviour and prey requirements of some of the major top-predators remains mysterious. For example, very little is known about the underwater foraging behaviour of the little auk, the most numerous seabird in the North Atlantic. In 2004, we used time–depth-recorders at two breeding colonies in East Greenland to examine the diving behaviour of this small, planktivorous seabird during the chick-rearing period. Due to technical difficulties data were only collected for four individuals, but recordings showed that birds dive up to 240 times a day to maximum depths of 27 m (average 10 m), with maximum dive durations of 90 s (average 52 s). In addition, we collected the chick meals from 35 individuals, which were dominated by Calanus copepods (95%), and also determined the field metabolic rates (FMR) of 14 individuals using the doubly labelled water technique, which averaged 609.9 kJ day−1. We integrated information on diving duration with chick diet and FMR to estimate the prey requirements and underwater capture rates of little auks using a Monte Carlo simulation. Chick-rearing little auks needed to catch about 59,800 copepods day−1, which is equivalent to about six copepods caught per second spent underwater. These astonishing results strongly suggest that little auks are, at least partly, filter-feeding, and underline the importance of highly productive, cool marine areas that harbour dense patches of large, energy-rich copepods.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ackerman JT, Adams J, Takekawa JY, Carter HR, Whitworth DL, Newman SH, Golightly RT, Orthmeyer DL (2004) Effects of radiotransmitters on the reproductive performance of Cassin’s auklets. Wildlife Soc Bull 43(4):1–13

    Google Scholar 

  2. Ainley DG, Sydeman WJ, Norton J (1995) Upper trophic level predators indicate interannual negative and positive anomalies in the California current food web. Mar Ecol Prog Ser 118:69–79

    Article  Google Scholar 

  3. Arctic Climate Impact Assessment (ACIA) (2004) Impacts of a warming Arctic: Arctic Climate Impact Assessment. Cambridge University Press, Cambridge

    Google Scholar 

  4. Båmstedt U (1986) Chemical composition and energy content. In: Corner EDS, O’Hara SCM (eds) The biological chemistry of marine copepods. Clarendon, Oxford, pp 1–58

    Google Scholar 

  5. Båmstedt U, Eilertsen H-C, Tande K, Slagstad D, Skjoldal HR (1991) Copepod grazing potential and its potential impact on the phytoplankton development in the Barents Sea. Polar Res 10:339–353

    Article  Google Scholar 

  6. Beaugrand G, Reid PC, Ibañez F, Lindley JA (2002a) Diversity of calanoid copepods in the North Atlantic and adjacent seas: species associations and biogeography. Mar Ecol Prog Ser 232:179–195

    Article  Google Scholar 

  7. Beaugrand G, Reid PC, Ibañez F, Lindley JA, Edwards M (2002b) Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296:1692–1694

    PubMed  Article  CAS  Google Scholar 

  8. Benvenuti S, Dall’Antonia L, Lyngs P (2001) Foraging behaviour and time allocation of chick-rearing razorbills Alca torda at Graesholmen, central Baltic Sea. Ibis 143:402–412

    Article  Google Scholar 

  9. Berestovskii EG, Anisimova NA, Denisenko CG, Luppova EN, Savinov VM, Timofeev CF (1989) Relationships between size and body mass of some invertebrates and fish of the North-East Atlantic. Academy of Sciences of the USSR. Murman Marine Biological Institute, Apatity, pp 1–24

  10. Błachowiak-Samołyk K, Kwaśniewski S, Richardson K, Dmoch K, Hansen E, Hop H, Falk-Petersen S, Mouritsen LT (2006) Arctic zooplankton do not perform diel vertical migration (DVM) during periods of midnight sun. Mar Ecol Prog Ser 308:101–116

    Article  Google Scholar 

  11. Blanc S, Geloen A, Pachiaudi C, Gharib C, Normand S (2000) Validation of the doubly labeled water technique in rats during isolation and simulated microgravity. Am J Physiol Regul Integr Comp Physiol 279:R1964–R1979

    PubMed  CAS  Google Scholar 

  12. Bradstreet MSW (1982) Pelagic feeding ecology of dovekies Alle alle in Lancaster Sound and Western Baffin Bay. Arctic 35:126–140

    Google Scholar 

  13. Bradstreet MSW, Brown RGB (1985) Feeding ecology of the Atlantic Alcidae. In: Nettleship DN, Birkhead TR (eds) The Atlantic Alcidae. Academic Press, London-Toronto, pp 264–313

    Google Scholar 

  14. Bryden HL, Longworth HR, Cunningham SA (2005) Slowing of the Atlantic meridional overturning circulation at 25°N. Nature 438:655–657

    PubMed  Article  CAS  Google Scholar 

  15. Burger AE (1991) Maximum diving depths and underwater foraging in alcids and penguins. Can Wildl Occasion Paper 68:9–15

    Google Scholar 

  16. Cherel Y, Weimerskirch H (1995) Seabirds as indicators of marine resources: black-browed albatrosses feeding on ommastrephid squids in Kerguelen waters. Mar Ecol Prog Ser 129:295–300

    Article  Google Scholar 

  17. Clark A, Harris CM (2003) Polar marine ecosystems: major threats and future change. Environ Conserv 30:1–25

    Google Scholar 

  18. Clark PU, Pisias NG, Stocker TF, Weaver AJ (2002) The role of the thermohaline circulation in abrupt climate change. Nature 415:863–869

    PubMed  Article  CAS  Google Scholar 

  19. Coward WA (1990) Calculation of pool sizes and flux rates. In: Prentice AM (ed) The doubly labelled water method: technical recommendations for use in humans. Report of an IDECG Expert Working Group, AERA, Vienna, Austria, pp 48–68

    Google Scholar 

  20. Croll DA, Gaston AJ, Burger AE, Konnoff D (1992) Foraging behavior and physiological adaptation for diving in thick-billed murres. Ecology 73:344–356

    Article  Google Scholar 

  21. Dall’Antonia L, Gudmundsson GA, Benvenuti S (2001) Time allocation and foraging pattern of chick-rearing razorbills in northwest Iceland. Condor 103:469–480

    Article  Google Scholar 

  22. Digby PSB (1961) The vertical migration and movements of marine plankton under midnight-sun conditions in Spitsbergen. J Anim Ecol 30:9–25

    Article  Google Scholar 

  23. Evans PGH (1981) Ecology and behaviour of the little auk Alle alle in West Greenland. Ibis 123:1–18

    Article  Google Scholar 

  24. Falk K, Pedersen CE, Kampp K (2000) Measurements of diving depths in dovekies (Alle alle). Auk 117:522–524

    Article  Google Scholar 

  25. Frederiksen M, Edwards M, Richardson AJ, Halliday C, Wanless S (2006) From plankton to top-predators: bottom-up control of a marine food web across four trophic levels. J Anim Ecol 75:1259–1268

    PubMed  Article  Google Scholar 

  26. Furness RW, Campuysen CJ (1997) Seabirds as monitors of the marine environment. ICES J Mar Sci 54:726–737

    Article  Google Scholar 

  27. Gabrielsen GW, Taylor JRE, Konarzewski M, Mehlum F (1991) Field and laboratory metabolism and thermoregulation in dovekies (Alle alle). Auk 108:71–78

    Google Scholar 

  28. Harding AMA, Van Pelt TI, Lifjeld JT, Mehlum F (2004) Sex differences in little auk Alle alle parental care: transition from biparental to paternal-only care. Ibis 146:642–651

    Article  Google Scholar 

  29. Harding AM, Piatt JF, Schmutz JA, Shultz MT, Van Pelt TI, Kettle AB, Speckman SG (2007) Prey density and the behavioral flexibility of a marine predator: the common murre (Uria aalge). Ecology 88:2024–2033

    PubMed  Article  Google Scholar 

  30. Hirche H-J (1997) Life cycle of the copepod Calanus hyperboreus in the Greenland Sea. Mar Biol 128:607–618

    Article  Google Scholar 

  31. Hurrell JW (2000) Climate: Northern Atlantic and Arctic Oscillation (NAO/AO). In: Holton J, Pyle J, Curry J (eds) Encyclopedia or atmospheric sciences. Academic Press, New York

    Google Scholar 

  32. Jakubas D, Wojczulanis-Jakubas K, Walkusz W (2007) Response of dovekie to changes in food availability. Waterbirds 30:421–428

    Article  Google Scholar 

  33. Jodice PGR, Roby DD, Suryan RM, Irons DB, Kaufman AM, Turco KR, Visser GH (2003) Variation in energy expenditure among black-legged kittiwakes: Effects of activity-specific metabolic rates and activity budgets. Physiol Biochem Zool 76:375–388

    PubMed  Article  CAS  Google Scholar 

  34. Karnovsky NJ, Kwaśniewski S, Węsławski JM, Walkusz W, Beszczyńska-Mőller A (2003) Foraging behaviour of little auks in a heterogeneous environment. Mar Ecol Prog Ser 253:289–303

    Article  Google Scholar 

  35. Kitaysky AS, Golubova EGl (2000) Climate change causes contrasting trends in reproductive performance of planktivorous and piscivorous alcids. J Anim Ecol 69:248–262

    Article  Google Scholar 

  36. Konarzewski M, Taylor JRE, Gabrielsen GW (1993) Chick energy requirements and adult energy expenditures of dovekies (Alle alle). Auk 110:343–353

    Google Scholar 

  37. Kooyman GL, Kooyman TG (1995) Diving behavior of emperor penguins nurturing chicks at Coulman Island, Antarctica. Condor 97:536–649

    Article  Google Scholar 

  38. Kosobokova KN (1980) Caloric value of some zooplankton representatives from the Central Arctic Basin and the White Sea. Oceanology 20:84–89

    Google Scholar 

  39. Kwaśniewski S, Hop H, Falk-Petersen S, Pedersen G (2003) Distribution of Calanus species in Kongsfjorden, a glacial fjord in Svalbard. J Plankton Res 25:1–20

    Article  Google Scholar 

  40. Lee DA, Nur N, Sydeman WJ (2007) Climate and demography of the planktivorous cassin’s auklet Ptychoramphus aleuticus off northern California: implications for population change. J Anim Ecol 76:337–347

    PubMed  Article  Google Scholar 

  41. Lifson N, McClintock R (1966) Theory of the use of the turnover rates of body water for measuring energy and material balance. J Theor Biol 12:46–74

    PubMed  Article  CAS  Google Scholar 

  42. Litzow MA, Piatt JF (2002) Variance in prey abundance influences time budgets of breeding seabirds: evidence from pigeon guillemots. J Avian Biol 34:54–64

    Article  Google Scholar 

  43. Lovvorn JR, Beduini CL, Hunt GL (2001) Modeling underwater visual and filter feeding by planktivorous shearwaters in unusual sea conditions. Ecology 82:2343–2356

    Article  Google Scholar 

  44. Manly BFJ (1997) Randomization, Bootstrap and Monte Carlo methods in biology. Chapman & Hall, London

    Google Scholar 

  45. Monaghan P, Uttley JD, Burns MD, Thaine C, Blackwood J (1989) The relationship between food supply, reproductive effort and breeding success in arctic terns Sterna paradisaea. J Anim Ecol 58:261–274

    Article  Google Scholar 

  46. Mumm N (1991) Zur sommerlichen Verteilung des Mesozooplanktons im Nansen-Becken, Nordpolarmeer. Ber Polarforsch 92:1–173

    Google Scholar 

  47. Norderhaug M (1980) Breeding biology of the little auk (Plautus alle) in Svalbard. Norsk Polarinstitutt 104:1–119

    Google Scholar 

  48. Pedersen CE, Falk K (2001) Chick diet of dovekies Alle alle in Northwest Greenland. Polar Biol 24:53–58

    Article  Google Scholar 

  49. Poltermann M (1997) Biology and ecology of cryopelagic amphipods from Arctic Sea ice. Ber Polarf 225:1–170

    Google Scholar 

  50. Racette SB, Schoeller DA, Luke AH, Shay K, Hnilicka J, Kushner RF (1994) Relative dilution spaces of 2H and 18O-labelled water in humans. Am J Physiol 30:E585–E590

    Google Scholar 

  51. Richardson AJ, Schoeman DS (2004) Climate impact on plankton ecosystems in the Northeast Atlantic. Science 305:1609–1612

    PubMed  Article  CAS  Google Scholar 

  52. Richter C (1994) Regional and seasonal variability in the vertical distribution of mesozooplankton in the Greenland Sea. Ber Polarforsch 154:1–90

    Google Scholar 

  53. Rysgaard S, Nielsen TG, Hansen B (1999) Seasonal variation in nutrients, pelagic primary production and grazing in a high-Arctic coastal marine ecosystem, Young Sound, Northeast Greenland. Mar Ecol Prog Ser 179:13–25

    Article  CAS  Google Scholar 

  54. Scott CL, Kwasniewski S, Falk-Petersen S, Sargent JR (2000) Lipids and life strategies of Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus in late autumn, Konsgsfjorden, Svalbard. Polar Biol 23:510–516

    Article  Google Scholar 

  55. Speakman JR (1997) Doubly labelled water: theory and practice. Chapman and Hall, New York

    Google Scholar 

  56. Stempniewicz L (2001) Alle alle Little Auk. The journal of the birds of the western palearctic. BWP Update, vol. 3. Oxford University Press, Oxford, pp 175–201

  57. Taylor JRE, Konarzewski M (1992) Budget of elements in little auk (Alle alle) chicks. Funct Ecol 6:137–144

    Article  Google Scholar 

  58. Tremblay Y, Cherel Y, Oremus M, Tveraa T, Chastel O (2003) Unconventional ventral attachment of time–depth recorders as a new method for investigating time budget and diving behaviour of seabirds. J Exp Biol 206:1929–1940

    PubMed  Article  Google Scholar 

  59. Van Franeker JA, Camphuysen CJ, Mehlum F (1998) The birds of Jan Mayen. Circumpolar J 13:28–43

    Google Scholar 

  60. Welcker J, Harding AMA, Karnovsky NJ, Steen H, Strøm H, Gabrielsen GW (2009) Flexibility in the bimodal foraging strategy of a high Arctic alcid, the little auk Alle alle. J Avian Biol (in press)

  61. Węsławski JM, Kwaśniewski S (1990) The consequences of climatic fluctuations for the food web in Svalbard coastal waters. In: Barnes M, Gibson RM (eds) Trophic relationships in the marine environment. Proceedings of 24th European marine biology symposium. Aberdeen University Press, Aberdeen, pp 281–295

    Google Scholar 

  62. Węsławski JM, Stempniewicz L, Galaktionov K (1994) Summer diet of seabirds from the Frans Josef Land archipelago, Russian Arctic. Polar research 13:173–181

    Article  Google Scholar 

  63. Węsławski JM, Koszteyn J, Kwaśniewski S, Stempniewicz L, Malinga M (1999a) Summer food resources of the little auk, Alle alle (L.) in the European Arctic seas. Pol Polar Res 20:387–403

    Google Scholar 

  64. Węsławski JM, Stempniewicz L, Mehlum F, Kwaśniewski S (1999b) Summer feeding strategy of the little auk (Alle alle) from Bjørnoya, Barents Sea. Polar Biol 21:21–134

    Google Scholar 

  65. Wilson RP, Pütz K, Charrassin J-B, Lage J (1995) Artifacts arising from sampling interval in dive depth studies of marine endotherms. Polar Biol 15:575–581

    Article  Google Scholar 

  66. Wilson RP, Pütz K, Peters G, Culik BM, Scolaro JA, Charrassin J-B, Ropert-Coudert Y (1997) Long-term attachment of transmitting and recording devices to penguins and others seabirds. Wild Soc Bull 25:101–106

    Google Scholar 

  67. Wilson RP, Grémillet D, Syder J, Kierspel MAM, Garthe S, Weimerskirch H, Schäfer-Neth C, Scolara JA, Bost C-A, Plötz J, Nel D (2002) Remote-sensing systems and seabirds; their use, abuse and potential for measuring marine environmental variables. Mar Ecol Prog Ser 228:241–261

    Article  Google Scholar 

  68. Wojczulanis K, Jakubas D, Walkusz W, Wennerberg L (2006) Differences in food delivered to chicks by males and females of little auks (Alle alle) on South Spitsbergen. J Ornithol 147:543–548

    Article  Google Scholar 

Download references

Acknowledgments

We thank K. Dmoch and the Institute of Oceanology for help with prey biomass and calorific values, A. Zahariev (Centre national de la recherche scientifique, Strasbourg) for help with DLW analysis, P. Jodice and D. Roby for invaluable DLW advice, and NANU Travel for logistical support in East Greenland. Earlier versions of this manuscript benefited from thoughtful reviews and feedback by J. Welcker, L. Stempniewicz, and J.M. Węsławski. This project was funded by the Greenland Institute of Natural Resources and the French Polar Institute Paul-Emile Victor (Grant 388 to D.G.). All field work was conducted with the permission of the Greenland Home Rule, Ministry of Environment and Nature.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carsten Egevang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Harding, A.M.A., Egevang, C., Walkusz, W. et al. Estimating prey capture rates of a planktivorous seabird, the little auk (Alle alle), using diet, diving behaviour, and energy consumption. Polar Biol 32, 785–796 (2009). https://doi.org/10.1007/s00300-009-0581-x

Download citation

Keywords

  • Doubly labelled water
  • Dovekie
  • Foraging behaviour
  • Greenland
  • Time–depth-recorders
  • Zooplankton