Skip to main content

Advertisement

Log in

The HSP70 heat shock response in the Antarctic fish Harpagifer antarcticus

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Members of the HSP70 gene family comprising the constitutive (HSC70) and inducible (HSP70) genes, plus GRP78 (Glucose-regulated protein 78 kDa) were surveyed for expression levels via Q-PCR after both an acute 2-h heat shock experiment and a time course assay in the Antarctic plunderfish Harpagifer antarcticus. In general, down regulation of all genes was observed during the course of the heat shock experiments. This thermally induced down regulation was particularly acute for the GRP78 gene, which at one time point was more than 100-fold down regulated. These results demonstrate the loss of the heat shock response in H. antarcticus, a basal member of the Notothenioidei. This finding is discussed with reference to the survival of Notothenioids during observed ocean warming and also the reorganisation of cellular protein mechanisms of species living in extreme environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ali A, Salter-Cid L, Flajnik MF, Heikkila JJ (1996) Isolation and characterisation of a cDNA encoding a Xenopus 70-kDa heat shock cognate gene. Comp Biochem Physiol 113B:681–687

    CAS  Google Scholar 

  • Ali KS, Dorgai L, Abraham M, Hermesz E (2003) Tissue- and stressor-specific differential expression of two hsc70 genes in carp. Biochem Biophys Res Commun 307:503–509

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Amores A, Force A, Yan Y-L, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang Y-L, Westerfield M, Ekker M, Postlethwait JH (1998) Zebrafish hox clusters and vertebrate genome evolution. Science 282:1711–1714

    Article  PubMed  CAS  Google Scholar 

  • Barber DL, Mills JE, Westermann JE, White MG (1981) The blood cells of the Antarctic icefish Chaenocephalus aceratus Lonnberg: light and electron microscopic observations. J Fish Biol 19:11–28

    Article  Google Scholar 

  • Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O’Donovan C, Phan I, Pilbout S, Schneider M (2003) The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 31:365–370

    Article  PubMed  CAS  Google Scholar 

  • Bosch TCG, Krylow SM, Bode HR, Steele RE (1988) Thermotolerance and synthesis of heat-shock proteins—these responses are present in hydra-attenuata but absent in hydra-oligactis. Proc Natl Acad Sci USA 85:7927–7931

    Article  PubMed  CAS  Google Scholar 

  • Carpenter CM, Hofmann GE (2000) Expression of 70 kDa heat shock proteins in Antarctic and New Zealand Notothenioid fish. Comp Biochem Physiol A 125:229–238

    Article  CAS  Google Scholar 

  • Clark MS, Fraser KPP, Peck LS (2007) Antarctic marine molluscs do have an HSP70 heat shock response. Cell Stress Chaperones (in press)

  • Cocca E, Ratnayake-Lecamwasam M, Parker SK, Camardella L, Ciaramella M, di Prisco G, Detrich HW III (1995) Genomic remnants of α-globin genes in the hemoglobinless Antarctic icefishes. Proc Natl Acad Sci USA 92:1817–1821

    Article  PubMed  CAS  Google Scholar 

  • Davison W, Axelsson M, Forster ME, Nilsson S (1995) Cardiovascular responses to acute handling stress in the Antarctic fish Trematomous bernachii are not mediated by circulatory catecholamines. Fish Physiol Biochem 14:253–257

    Article  CAS  Google Scholar 

  • di Prisco G, Cocca E, Parker S, Detrich HW III (2002) Tracking the evolutionary loss of hemoglobin expression by the white blooded Antarctic icefishes. Gene 295:185–191

    Article  PubMed  CAS  Google Scholar 

  • Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185

    PubMed  CAS  Google Scholar 

  • Fink AL (1999) Chaperone-mediated protein folding. Physiol Rev 79:425–449

    PubMed  CAS  Google Scholar 

  • Fisher RA (1954) Statistical methods for research workers. Pub Oliver and Boyd, Edinburgh

    Google Scholar 

  • Fraser KPP, Rogers AD (2007) Protein metabolism in marine animals: the underlying mechanism of growth. Adv Mar Biol 52:267–362

    Article  PubMed  Google Scholar 

  • Fraser KPP, Clarke A, Peck LS (2002) Feast and famine in Antarctica: seasonal physiology in the limpet Nacella concinna. Mar Ecol Prog Ser 242:169–177

    Article  Google Scholar 

  • Frederich M, Pőrtner HO (2000) Oxygen limitation of thermal tolerance defined by cardiac and ventilatory performance in the spider crab, Maja squinado. Am J Physiol 279:R1531–R1538

    CAS  Google Scholar 

  • Gene Ontology Consortium (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  Google Scholar 

  • Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8:195–202

    PubMed  CAS  Google Scholar 

  • Gracey AY, Troll JV, Somero GN (2001) Hypoxia induced gene expression profiling in the euryoxic fish Gillichthys mirabilis. Proc Natl Acad Sci USA 98:1993–1998

    Article  PubMed  CAS  Google Scholar 

  • Gross M (2004) Emergency services: a bird’s eye perspective on the many different functions of stress proteins. Curr Protein Peptide Sci 5:213–223

    Article  CAS  Google Scholar 

  • Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–580

    Article  PubMed  CAS  Google Scholar 

  • Hendershot LM, Valentine VA, Lee AS, Morris SW, Shapiro DN (1994) Localization of the gene encoding human bip/grp78, the endoplasmic-reticulum cognate of the hsp70 family, to chromosome-9q34. Genomics 20:281–284

    Article  PubMed  CAS  Google Scholar 

  • Hochachka PW, Buck LT, Doll CJ, Land SC (1996) Unifying theory of hypoxia tolerance: molecular metabolic defense and rescue mechanisms for surviving oxygen lack. Proc Natl Acad Sci USA 93:9493–9498

    Article  PubMed  CAS  Google Scholar 

  • Hofmann GE (2005) Patterns of gene expression in ectothermic marine organisms on small to large-scale biogeographical patterns. Intergr Comp Biol 45:247–255

    Article  CAS  Google Scholar 

  • Hofmann GE, Buckley BA, Airaksinen S, Keen JE, Somero GN (2000) The Antarctic fish Trematomus bernachii lacks heat inducible heat shock protein synthesis. J Exp Biol 203:2331–2339

    PubMed  CAS  Google Scholar 

  • Hofmann GE, Lund SG, Place SP, Whitmer AC (2005) Some like it hot, some like it cold: the heat shock response is found in New Zealand but not Antarctic notothenioid fishes. J Exp Mar Biol Ecol 316:79–89

    Article  CAS  Google Scholar 

  • Hunt C, Morimoto RI (1985) Conserved features of eukaryotic hsp70 genes revealed by comparison with the nucleotide sequence of human hsp70. Proc Natl Acad Sci USA 82:6455–6459

    Article  PubMed  CAS  Google Scholar 

  • Hureau JC, Petit D, Fine JM, Marneax M (1977) New cytological, biochemical and physiological data on the colorless blood of the Channichthyidae (Pisces, Teleosteans, Perciformes). In: Llano GA (ed) Adaptations within Antarctic ecosystems. Smithsonian Institution, Washington DC, pp 459–477

    Google Scholar 

  • Jin Y, deVries AL (2006) Antifreeze glycoprotein levels in Antarctic notthenioid fishes inhabiting different thermal environments and the effect of warm acclimation. Comp Biochem Physiol B 144:290–300

    Article  PubMed  Google Scholar 

  • Krebs RA, Loeschcke V (1994) Costs and benefits of activation of the heat-shock response in Drosophila melanogaster. Funct Ecol 8:730–737

    Article  Google Scholar 

  • Laios E, Rebeyka IM, Prody CA (1997) Charcterization of cold-induced heat shock protein expression in neonatal rat cardiomyocytes. Mol Cell Biochem 173:153–159

    Article  PubMed  CAS  Google Scholar 

  • LaTerza AL, Miceli C, Luporine P (2001) Divergenec between two Antarctic species of the ciliate Euplotes, E. focardii and E. nobilii, in the expression of heat-shock protein 70 genes. Mol Ecol 10:1061–1067

    Article  CAS  Google Scholar 

  • LaTerza AL, Miceli C, Luporine P (2004) The gene for the heat-shock protein 70 of Euplotes focardii, an Antarctic psychrophilic ciliate. Antarct Sci 16:23–28

    Article  Google Scholar 

  • Lindquist S (1986) The heat shock response. Annu Rev Biochem 55:1151–1159

    Article  PubMed  CAS  Google Scholar 

  • Lowe CJ, Davison W (2005) Plasma osmolarity, glucose concentration and erythrocyte responses of two Antarctic notothenioid fishes to acute and chronic thermal change. J Fish Biol 67:752–766

    Article  Google Scholar 

  • Meredith MP, King JC (2005) Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys Lett 32:L19604–L19609

    Article  Google Scholar 

  • Milner CM, Campbell RD (1990) Structure and expression of the three MHC-linked HSP70 genes. Immunogenet 32:242–251

    Article  CAS  Google Scholar 

  • Morimoto RI (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12:3788–3796

    PubMed  CAS  Google Scholar 

  • Near TJ, Pesavento JJ, Cheng CC-H (2004) Phylogenetic investigations of Antarctic notothenioid fishes (Perciformes: Notothenioidei) using complete gene sequences of the mitochondrial encoded 16s rRNA. Mol Phylogenet Evol 32:881–891

    Article  PubMed  CAS  Google Scholar 

  • Ojima N, Yamashita M, Watabe S (2005) Quantitative mRNA expression profiling of heat shock protein families in rainbow trout cells. Biochem Biophys Res Commun 329:51–57

    Article  PubMed  CAS  Google Scholar 

  • Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance—degradation and reactivation of damaged proteins. Annu Rev Genet 27:437–496

    Article  PubMed  CAS  Google Scholar 

  • Peck LS (2002) Ecophysiology of Antarctic marine ectotherms: limits to life. Polar Biol 25:31–40

    Article  Google Scholar 

  • Peck LS, Conway LZ (2000) The myth of metabolic cold adaptation: oxygen consumption in stenothermal Antarctic bivalve molluscs. In: Harper E, Crame AJ (eds) Evolutionary biology of the bivalvia. Geol Soc Lond Specl Publ, vol 177, pp 441–450, Cambridge University Press, Cambridge

  • Peck LS, Webb KE, Bailey DM (2004) Extreme sensitivity of biological function to temperature in Antarctic marine species. Funct Ecol 18:625–630

    Article  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007

    Article  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:1–10

    Article  Google Scholar 

  • Place SP, Hofmann GE (2005) Constitutive expression of a stress-inducible heat shock protein gene, hsp70, in a phylogenetically distant Antarctic fish. Polar Biol 28:261–267

    Article  Google Scholar 

  • Place SP, Zippay ML, Hofmann GE (2004) Constitutive roles for inducible genes: evidence for the alteration in expression of the inducible hsp70 gene in Antarctic notothenioid fishes. Am J Physiol Regul Integr Comp Physiol 287:R429–R436

    PubMed  CAS  Google Scholar 

  • Podrabsky JE, Somero GN (2004) Changes in gene expression associated with acclimation to constant temperatures and fluctuating daily temperatures in an annual killifish Austrofundulus limnaeus. J Exp Biol 207:2237–2254

    Article  PubMed  CAS  Google Scholar 

  • Podrabsky JE, Somero GN (2006) Inducible heat tolerance in Antarctic nothothenioid fishes. Polar Biol 30:39–43

    Article  Google Scholar 

  • Privalov PL (1990) Cold denaturation of proteins. Crit Rev Biochem Mol Biol 25:281–305

    PubMed  CAS  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277

    Article  PubMed  CAS  Google Scholar 

  • Ritossa F (1962) A new puffing pattern induced by temperature shock and DNP in Drosphila. Experimentia 18:571–573

    Article  CAS  Google Scholar 

  • Silbermann R, Tatar M (2000) Reproductive costs of heat shock protein in transgenic Drosophila melanogaster. Evol Int J Org Evolution 54:2038–2045

    CAS  Google Scholar 

  • Somero GN (2002) Thermal physiology and vertical zonation of intertidal animals: optima, limits and costs of living. Integr Comp Biol 42:780–789

    Article  Google Scholar 

  • Somero GN, DeVries AL (1967) Temperature tolerance of some Antarctic fishes. Science 156:257–258

    Article  PubMed  CAS  Google Scholar 

  • Sommer T, Jarosch E (2002) BiP binding keeps ATF6 at bay. Dev Cell 3:1–2

    Article  PubMed  CAS  Google Scholar 

  • Sorensen JG, Kristensen TN, Loeschcke V (2003) The evolutionary and ecological role of heat shock proteins. Ecol Lett 6:1025–1037

    Article  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL-W—improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Venkatesh B, Tay BH, Elgar G, Brenner S (1996) Isolation, characterization and evolution of nine pufferfish (Fugu rubripes) actin genes. J Mol Biol 259:655–665

    Article  PubMed  CAS  Google Scholar 

  • Voellmy R, Ahmed A, Schiller P, Bromley P, Rungger D (1985) Isolation and functional analysis of a human 70,000-dalton heat shock protein gene fragment. Proc Natl Acad Sci USA 82:4949–4953

    Article  PubMed  CAS  Google Scholar 

  • Whiteley NM, Egginton S (1999) Antarctic fishes have a limited capacity for catecholamine synthesis. J Exp Biol 202:3623–3629

    PubMed  CAS  Google Scholar 

  • Wu CH, Apweiler R, Bairoch A, Natale DA, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ, Mazumder R, O’Donovan C, Redaschi N, Suzek B (2006) The Universal Protein Resource (UniProt) an expanding universe of protein information. Nucleic Acids Res 34:D187–D191

    Article  PubMed  CAS  Google Scholar 

  • Yamashita M, Hirayoshi K, Nagata K (2004) Characterisation of multiple members of the HSP70 family in platyfish culture cells: molecular evolution of stress protein HSP70 in vertebrates. Gene 336:207–218

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This paper was produced within the BAS Q3 LATEST and BAS Q4 BIOREACH/BIOFLAME core programmes. The authors would like to thank all members of the Rothera Dive Team for providing samples and to Pete Rothery for statistics advice. Overall diving support was provided by the NERC National Facility for Scientific Diving at Oban.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melody S. Clark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, M.S., Fraser, K.P.P., Burns, G. et al. The HSP70 heat shock response in the Antarctic fish Harpagifer antarcticus . Polar Biol 31, 171–180 (2008). https://doi.org/10.1007/s00300-007-0344-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-007-0344-5

Keywords

Navigation